{"title":"模拟农业养分过剩的累积效应:物质平衡会计的动态方法","authors":"Timo Kuosmanen","doi":"10.2139/ssrn.2141788","DOIUrl":null,"url":null,"abstract":"Nutrients such as nitrogen and phosphorus have a dual role as inputs to crop production and as pollutants to water, air, and soil. The nutrient surplus measures are frequently used as indicators of environmental performance or eco-efficiency at micro level of individual farms and at macro levels of regions and countries. However, the static material balance accounting ignores an important dimension of the nutrient cycle: the time. Nutrients accumulate in soil, causing delayed effects and persistent harm to the environment. In this paper we propose a dynamic model of material balance, following the standard model of capital accumulation used in production economics. Using data of agricultural production in Finland in the years 1961–2009, we show that it is possible to estimate the stocks of nitrogen and phosphorus accumulated in the soil using information and data that are readily available. The dynamic model allows us to estimate not only the stocks of nutrients, but also the outflow of nutrients to water and air. Better understanding of flows and stocks of nutrients can provide insights to support managerial and policy decisions.","PeriodicalId":340493,"journal":{"name":"Pollution eJournal","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Modeling Cumulative Effects of Nutrient Surpluses in Agriculture: A Dynamic Approach to Material Balance Accounting\",\"authors\":\"Timo Kuosmanen\",\"doi\":\"10.2139/ssrn.2141788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nutrients such as nitrogen and phosphorus have a dual role as inputs to crop production and as pollutants to water, air, and soil. The nutrient surplus measures are frequently used as indicators of environmental performance or eco-efficiency at micro level of individual farms and at macro levels of regions and countries. However, the static material balance accounting ignores an important dimension of the nutrient cycle: the time. Nutrients accumulate in soil, causing delayed effects and persistent harm to the environment. In this paper we propose a dynamic model of material balance, following the standard model of capital accumulation used in production economics. Using data of agricultural production in Finland in the years 1961–2009, we show that it is possible to estimate the stocks of nitrogen and phosphorus accumulated in the soil using information and data that are readily available. The dynamic model allows us to estimate not only the stocks of nutrients, but also the outflow of nutrients to water and air. Better understanding of flows and stocks of nutrients can provide insights to support managerial and policy decisions.\",\"PeriodicalId\":340493,\"journal\":{\"name\":\"Pollution eJournal\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pollution eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2141788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollution eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2141788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling Cumulative Effects of Nutrient Surpluses in Agriculture: A Dynamic Approach to Material Balance Accounting
Nutrients such as nitrogen and phosphorus have a dual role as inputs to crop production and as pollutants to water, air, and soil. The nutrient surplus measures are frequently used as indicators of environmental performance or eco-efficiency at micro level of individual farms and at macro levels of regions and countries. However, the static material balance accounting ignores an important dimension of the nutrient cycle: the time. Nutrients accumulate in soil, causing delayed effects and persistent harm to the environment. In this paper we propose a dynamic model of material balance, following the standard model of capital accumulation used in production economics. Using data of agricultural production in Finland in the years 1961–2009, we show that it is possible to estimate the stocks of nitrogen and phosphorus accumulated in the soil using information and data that are readily available. The dynamic model allows us to estimate not only the stocks of nutrients, but also the outflow of nutrients to water and air. Better understanding of flows and stocks of nutrients can provide insights to support managerial and policy decisions.