结合队列模型和UBM模型在开集说话人识别中的应用

Anthony Brew, P. Cunningham
{"title":"结合队列模型和UBM模型在开集说话人识别中的应用","authors":"Anthony Brew, P. Cunningham","doi":"10.1109/CBMI.2009.30","DOIUrl":null,"url":null,"abstract":"In open set speaker identification it is important to build an alternative model against which to compare scores from the 'target' speaker model. Two alternative strategies for building an alternative model are to build a single global model by sampling from a pool of training data, the Universal Background  (UBM), or to build a cohort of models from selected individuals in the training data for the target speaker. The main contribution in this paper is to show that these approaches can be unified by using a Support Vector Machine (SVM) to learn a decision rule in the score space made up of the output scores of the client, cohort and UBM model.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Combining Cohort and UBM Models in Open Set Speaker Identification\",\"authors\":\"Anthony Brew, P. Cunningham\",\"doi\":\"10.1109/CBMI.2009.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In open set speaker identification it is important to build an alternative model against which to compare scores from the 'target' speaker model. Two alternative strategies for building an alternative model are to build a single global model by sampling from a pool of training data, the Universal Background  (UBM), or to build a cohort of models from selected individuals in the training data for the target speaker. The main contribution in this paper is to show that these approaches can be unified by using a Support Vector Machine (SVM) to learn a decision rule in the score space made up of the output scores of the client, cohort and UBM model.\",\"PeriodicalId\":417012,\"journal\":{\"name\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2009.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在开放集说话人识别中,重要的是建立一个替代模型,与“目标”说话人模型的分数进行比较。建立替代模型的两种策略是通过从训练数据池中采样来建立一个单一的全局模型,即通用背景(UBM),或者从目标说话者的训练数据中选择个体建立一个模型队列。本文的主要贡献是表明这些方法可以通过使用支持向量机(SVM)来统一,在由客户端、队列和UBM模型的输出分数组成的分数空间中学习决策规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Cohort and UBM Models in Open Set Speaker Identification
In open set speaker identification it is important to build an alternative model against which to compare scores from the 'target' speaker model. Two alternative strategies for building an alternative model are to build a single global model by sampling from a pool of training data, the Universal Background  (UBM), or to build a cohort of models from selected individuals in the training data for the target speaker. The main contribution in this paper is to show that these approaches can be unified by using a Support Vector Machine (SVM) to learn a decision rule in the score space made up of the output scores of the client, cohort and UBM model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion Vector Based Moving Object Detection and Tracking in the MPEG Compressed Domain A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification Monophony vs Polyphony: A New Method Based on Weibull Bivariate Models Kernel Discriminant Analysis Using Triangular Kernel for Semantic Scene Classification Biometric Responses to Music-Rich Segments in Films: The CDVPlex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1