{"title":"具有可持续性视角的网络物理系统中的可互操作工具链","authors":"Didem Gürdür, Katja Tasala Gradin","doi":"10.1109/SUSTECH.2017.8333471","DOIUrl":null,"url":null,"abstract":"The development of cyber-physical systems (CPS) requires various engineering disciplines, artifacts, and areas of expertise to collaborate. Powerful software tools are used during this development process, but while successful in one individual discipline, it is often challenging to integrate with other tools. Several studies have been done on integration solutions for these toolchains. However, the possibility of including the sustainability concept to the interoperability strategies is rarely studied. This paper discusses an approach to include sustainability aspects while improving the interoperability of toolchains in CPS manufacturing. To this end, an automobile manufacturing process has been studied as a use case, and relevant sustainability metrics for each stage of the process are identified. Life cycle sustainability assessment methodology is used to identify the sustainability metrics, and the use case is employed to exemplify how some of these metrics can be integrated with interoperable toolchains to illustrate the applicability of the approach.","PeriodicalId":231217,"journal":{"name":"2017 IEEE Conference on Technologies for Sustainability (SusTech)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interoperable toolchains in cyber-physical systems with a sustainability perspective\",\"authors\":\"Didem Gürdür, Katja Tasala Gradin\",\"doi\":\"10.1109/SUSTECH.2017.8333471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of cyber-physical systems (CPS) requires various engineering disciplines, artifacts, and areas of expertise to collaborate. Powerful software tools are used during this development process, but while successful in one individual discipline, it is often challenging to integrate with other tools. Several studies have been done on integration solutions for these toolchains. However, the possibility of including the sustainability concept to the interoperability strategies is rarely studied. This paper discusses an approach to include sustainability aspects while improving the interoperability of toolchains in CPS manufacturing. To this end, an automobile manufacturing process has been studied as a use case, and relevant sustainability metrics for each stage of the process are identified. Life cycle sustainability assessment methodology is used to identify the sustainability metrics, and the use case is employed to exemplify how some of these metrics can be integrated with interoperable toolchains to illustrate the applicability of the approach.\",\"PeriodicalId\":231217,\"journal\":{\"name\":\"2017 IEEE Conference on Technologies for Sustainability (SusTech)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Technologies for Sustainability (SusTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUSTECH.2017.8333471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Technologies for Sustainability (SusTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUSTECH.2017.8333471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interoperable toolchains in cyber-physical systems with a sustainability perspective
The development of cyber-physical systems (CPS) requires various engineering disciplines, artifacts, and areas of expertise to collaborate. Powerful software tools are used during this development process, but while successful in one individual discipline, it is often challenging to integrate with other tools. Several studies have been done on integration solutions for these toolchains. However, the possibility of including the sustainability concept to the interoperability strategies is rarely studied. This paper discusses an approach to include sustainability aspects while improving the interoperability of toolchains in CPS manufacturing. To this end, an automobile manufacturing process has been studied as a use case, and relevant sustainability metrics for each stage of the process are identified. Life cycle sustainability assessment methodology is used to identify the sustainability metrics, and the use case is employed to exemplify how some of these metrics can be integrated with interoperable toolchains to illustrate the applicability of the approach.