下水道冲浪冲刷效率的数值与实验研究

M. Alihosseini, P. Thamsen
{"title":"下水道冲浪冲刷效率的数值与实验研究","authors":"M. Alihosseini, P. Thamsen","doi":"10.1115/ajkfluids2019-4615","DOIUrl":null,"url":null,"abstract":"\n In sewer sediment management, the removal of depositions using hydraulic flushing gates has recently gotten great attention. Despite numerous investigations, the complex process of sediment transport under flushing waves is not yet well understood. The present work aims to calibrate and validate a coupled computational fluid dynamics and discrete element method (CFD-DEM) to study the fluid-sediment interaction in sewers. The CFD part of the simulation was carried out in the software Ansys Fluent which is two-way coupled to the DEM software EDEM. The multiphase model volume of fluid (VOF) was used to simulate the flushing wave, while the sediments were handled as DEM particles using the discrete phase model (DPM). To validate the 3D model, experimental work has been performed in a circular laboratory pipe with sand and gravel of different size distributions. A construction of a sluice gate was installed to realize the flushing event, which is similar to a dam-break wave. The evolution of the sediment bed and the scouring efficiency of the waves were examined under different flushing conditions. The results showed that the CFD-DEM method could be used to investigate the performance of flushing devices and various features of sediment transport which are not easy to obtain in the laboratory or field.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Scouring Efficiency of Flush Waves in Sewers: A Numerical and Experimental Study\",\"authors\":\"M. Alihosseini, P. Thamsen\",\"doi\":\"10.1115/ajkfluids2019-4615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In sewer sediment management, the removal of depositions using hydraulic flushing gates has recently gotten great attention. Despite numerous investigations, the complex process of sediment transport under flushing waves is not yet well understood. The present work aims to calibrate and validate a coupled computational fluid dynamics and discrete element method (CFD-DEM) to study the fluid-sediment interaction in sewers. The CFD part of the simulation was carried out in the software Ansys Fluent which is two-way coupled to the DEM software EDEM. The multiphase model volume of fluid (VOF) was used to simulate the flushing wave, while the sediments were handled as DEM particles using the discrete phase model (DPM). To validate the 3D model, experimental work has been performed in a circular laboratory pipe with sand and gravel of different size distributions. A construction of a sluice gate was installed to realize the flushing event, which is similar to a dam-break wave. The evolution of the sediment bed and the scouring efficiency of the waves were examined under different flushing conditions. The results showed that the CFD-DEM method could be used to investigate the performance of flushing devices and various features of sediment transport which are not easy to obtain in the laboratory or field.\",\"PeriodicalId\":322380,\"journal\":{\"name\":\"Volume 5: Multiphase Flow\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Multiphase Flow\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-4615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-4615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在下水道沉积物管理中,利用水力冲洗闸门清除沉积物近年来受到广泛关注。尽管进行了大量的研究,但对冲刷波作用下沉积物输运的复杂过程仍不甚了解。本工作旨在校准和验证一种耦合计算流体动力学和离散元方法(CFD-DEM)来研究下水道中流体-沉积物的相互作用。仿真的CFD部分在Ansys Fluent软件中进行,该软件与DEM软件EDEM双向耦合。采用流体多相模型体积(VOF)模拟冲刷波,采用离散相模型(DPM)将沉积物作为DEM颗粒处理。为了验证三维模型,在一个圆形实验室管道中进行了不同尺寸分布的砂砾的实验工作。为了实现类似溃坝波的冲刷事件,安装了水闸结构。考察了不同冲刷条件下泥沙层的演变和波浪的冲刷效率。结果表明,CFD-DEM方法可用于研究冲刷装置的性能和泥沙输运的各种特征,这些特征在实验室或现场不易获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Scouring Efficiency of Flush Waves in Sewers: A Numerical and Experimental Study
In sewer sediment management, the removal of depositions using hydraulic flushing gates has recently gotten great attention. Despite numerous investigations, the complex process of sediment transport under flushing waves is not yet well understood. The present work aims to calibrate and validate a coupled computational fluid dynamics and discrete element method (CFD-DEM) to study the fluid-sediment interaction in sewers. The CFD part of the simulation was carried out in the software Ansys Fluent which is two-way coupled to the DEM software EDEM. The multiphase model volume of fluid (VOF) was used to simulate the flushing wave, while the sediments were handled as DEM particles using the discrete phase model (DPM). To validate the 3D model, experimental work has been performed in a circular laboratory pipe with sand and gravel of different size distributions. A construction of a sluice gate was installed to realize the flushing event, which is similar to a dam-break wave. The evolution of the sediment bed and the scouring efficiency of the waves were examined under different flushing conditions. The results showed that the CFD-DEM method could be used to investigate the performance of flushing devices and various features of sediment transport which are not easy to obtain in the laboratory or field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transient Approach for Estimating Concentration of Water Droplets in Oil and Corrosion Assessment in the Oil and Gas Industry Effect of Interstage Injection on Compressor Flow Characteristic Air Entrainment and Bubble Generation by a Hydrofoil in a Turbulent Channel Flow Experimental Study of Bubble-Droplet Interactions in Improved Primary Oil Separation Effects of Liquid Viscosity on Laser-Induced Shock Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1