{"title":"稳定/不稳定线性和非线性系统的自适应PID控制器","authors":"B. Badreddine, Feng-Yi Lin","doi":"10.1109/CCA.2001.974006","DOIUrl":null,"url":null,"abstract":"Proposes and analyzes a direct adaptive proportional-integral-derivative (APID) control scheme for off-line and online tuning of PID parameters. The tuning algorithm determines a set of PID parameters by minimizing an error function. The theory of adaptive interaction is used to design the APID control law. Two versions of the tuning algorithm are presented: the Frechet and approximation methods. These algorithms are applied to linear and nonlinear plants. Lyapunov stability theory is used to proof the stability of the approximation method. The analysis of the convergence properties and system performance are conducted by using computer simulations and several known adaptation concepts. The approximation method does not require the knowledge of the plant to be controlled; therefore, the control scheme becomes robust to plant changes.","PeriodicalId":365390,"journal":{"name":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Adaptive PID controller for stable/unstable linear and non-linear systems\",\"authors\":\"B. Badreddine, Feng-Yi Lin\",\"doi\":\"10.1109/CCA.2001.974006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes and analyzes a direct adaptive proportional-integral-derivative (APID) control scheme for off-line and online tuning of PID parameters. The tuning algorithm determines a set of PID parameters by minimizing an error function. The theory of adaptive interaction is used to design the APID control law. Two versions of the tuning algorithm are presented: the Frechet and approximation methods. These algorithms are applied to linear and nonlinear plants. Lyapunov stability theory is used to proof the stability of the approximation method. The analysis of the convergence properties and system performance are conducted by using computer simulations and several known adaptation concepts. The approximation method does not require the knowledge of the plant to be controlled; therefore, the control scheme becomes robust to plant changes.\",\"PeriodicalId\":365390,\"journal\":{\"name\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2001.974006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2001.974006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive PID controller for stable/unstable linear and non-linear systems
Proposes and analyzes a direct adaptive proportional-integral-derivative (APID) control scheme for off-line and online tuning of PID parameters. The tuning algorithm determines a set of PID parameters by minimizing an error function. The theory of adaptive interaction is used to design the APID control law. Two versions of the tuning algorithm are presented: the Frechet and approximation methods. These algorithms are applied to linear and nonlinear plants. Lyapunov stability theory is used to proof the stability of the approximation method. The analysis of the convergence properties and system performance are conducted by using computer simulations and several known adaptation concepts. The approximation method does not require the knowledge of the plant to be controlled; therefore, the control scheme becomes robust to plant changes.