5G通信业务故障对智能配电网中智能电子设备布局的影响

R. Muka, M. Garau, Besmir Tola, P. Heegaard
{"title":"5G通信业务故障对智能配电网中智能电子设备布局的影响","authors":"R. Muka, M. Garau, Besmir Tola, P. Heegaard","doi":"10.1109/SmartGridComm51999.2021.9632333","DOIUrl":null,"url":null,"abstract":"Information and Communication Technology (ICT) is fundamental to guarantee efficient monitoring, control and protection of smart distribution grids by interconnected Intelligent Electronic Devices (IEDs). The impact of failures in the IEDs communication service, and the dependency between the communication network and the power grid, need to be understood and taken into account when determining the optimal placement of IEDs. In this paper, the main objective is to investigate how loss of the communication service that connects the IEDs to Distribution Management System (DMS), will affect the placement of IEDs for smart grid monitoring and control. It is assessed the impact of 5G communication service failure on the IEDs placement with the objective to minimize the interruption costs (Cost of Energy Not Supplied), and the yearly expenses of the IEDs installed. The method is tested on the IEEE 33-bus radial distribution system, with a 5G communication network, covering both rural and urban areas. The results suggest a need for more IEDs per bus in the rural area because the power lines are longer, and the failure rates are higher than in the urban area. Furthermore, when introducing sub-regions that have higher power line failure rates and less reliable communication service, we observe that more IEDs are suggested to be placed in these regions. This demonstrates that methods for IEDs placement should take into consideration the ICT communication service failures, especially in sub-regions with higher power line failure rates and/or unstable ICT communication service that comes as result of failures in the power grid.","PeriodicalId":378884,"journal":{"name":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of 5G communication service failure on placement of Intelligent Electronic Devices in Smart Distribution Grids\",\"authors\":\"R. Muka, M. Garau, Besmir Tola, P. Heegaard\",\"doi\":\"10.1109/SmartGridComm51999.2021.9632333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information and Communication Technology (ICT) is fundamental to guarantee efficient monitoring, control and protection of smart distribution grids by interconnected Intelligent Electronic Devices (IEDs). The impact of failures in the IEDs communication service, and the dependency between the communication network and the power grid, need to be understood and taken into account when determining the optimal placement of IEDs. In this paper, the main objective is to investigate how loss of the communication service that connects the IEDs to Distribution Management System (DMS), will affect the placement of IEDs for smart grid monitoring and control. It is assessed the impact of 5G communication service failure on the IEDs placement with the objective to minimize the interruption costs (Cost of Energy Not Supplied), and the yearly expenses of the IEDs installed. The method is tested on the IEEE 33-bus radial distribution system, with a 5G communication network, covering both rural and urban areas. The results suggest a need for more IEDs per bus in the rural area because the power lines are longer, and the failure rates are higher than in the urban area. Furthermore, when introducing sub-regions that have higher power line failure rates and less reliable communication service, we observe that more IEDs are suggested to be placed in these regions. This demonstrates that methods for IEDs placement should take into consideration the ICT communication service failures, especially in sub-regions with higher power line failure rates and/or unstable ICT communication service that comes as result of failures in the power grid.\",\"PeriodicalId\":378884,\"journal\":{\"name\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm51999.2021.9632333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm51999.2021.9632333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息通信技术(ICT)是通过互联的智能电子设备(ied)对智能配电网进行有效监测、控制和保护的基础。在确定ied的最佳放置位置时,需要了解和考虑ied通信服务故障的影响以及通信网络与电网之间的依赖关系。本文的主要目的是研究连接ied与配电管理系统(DMS)的通信服务的丢失将如何影响用于智能电网监测和控制的ied的放置。以减少中断费用(未供应能源费用)和每年安装ied的费用为目标,评估5G通信服务中断对ied放置的影响。该方法在IEEE 33总线径向分配系统上进行了测试,该系统具有5G通信网络,覆盖农村和城市地区。结果表明,在农村地区,每辆公共汽车需要更多的简易爆炸装置,因为电力线较长,故障率高于城市地区。此外,当引入电力线故障率较高和通信服务可靠性较差的子区域时,我们观察到建议在这些区域放置更多的简易爆炸装置。这表明,放置简易爆炸装置的方法应考虑到信息通信技术通信服务故障,特别是在电力线故障率较高和/或由于电网故障而导致信息通信技术通信服务不稳定的次区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of 5G communication service failure on placement of Intelligent Electronic Devices in Smart Distribution Grids
Information and Communication Technology (ICT) is fundamental to guarantee efficient monitoring, control and protection of smart distribution grids by interconnected Intelligent Electronic Devices (IEDs). The impact of failures in the IEDs communication service, and the dependency between the communication network and the power grid, need to be understood and taken into account when determining the optimal placement of IEDs. In this paper, the main objective is to investigate how loss of the communication service that connects the IEDs to Distribution Management System (DMS), will affect the placement of IEDs for smart grid monitoring and control. It is assessed the impact of 5G communication service failure on the IEDs placement with the objective to minimize the interruption costs (Cost of Energy Not Supplied), and the yearly expenses of the IEDs installed. The method is tested on the IEEE 33-bus radial distribution system, with a 5G communication network, covering both rural and urban areas. The results suggest a need for more IEDs per bus in the rural area because the power lines are longer, and the failure rates are higher than in the urban area. Furthermore, when introducing sub-regions that have higher power line failure rates and less reliable communication service, we observe that more IEDs are suggested to be placed in these regions. This demonstrates that methods for IEDs placement should take into consideration the ICT communication service failures, especially in sub-regions with higher power line failure rates and/or unstable ICT communication service that comes as result of failures in the power grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-complexity Risk-averse MPC for EMS Modeling framework for study of distributed and centralized smart grid system services Data-Driven Frequency Regulation Reserve Prediction Based on Deep Learning Approach Data Communication Interfaces in Smart Grid Real-time Simulations: Challenges and Solutions Modeling of Cyber Attacks Against Converter-Driven Stability of PMSG-Based Wind Farms with Intentional Subsynchronous Resonance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1