{"title":"边缘计算中任务分配的网络决策智能","authors":"Konstantinos Kolomvatsos, C. Anagnostopoulos","doi":"10.1109/ICTAI.2018.00104","DOIUrl":null,"url":null,"abstract":"Humongous contextual data are produced by sensing and computing devices (nodes) in distributed computing environments supporting inferential/predictive analytics. Nodes locally process and execute analytics tasks over contextual data. Demanding inferential analytics are crucial for supporting local real-time applications, however, they deplete nodes' resources. We contribute with a distributed methodology that pushes the task allocation decision at the network edge by intelligently scheduling and distributing analytics tasks among nodes. Each node autonomously decides whether the tasks are conditionally executed locally, or in networked neighboring nodes, or delegated to the Cloud based on the current nodes' context and statistical data relevance. We comprehensively evaluate our methodology demonstrating its applicability in edge computing environments.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"In-Network Decision Making Intelligence for Task Allocation in Edge Computing\",\"authors\":\"Konstantinos Kolomvatsos, C. Anagnostopoulos\",\"doi\":\"10.1109/ICTAI.2018.00104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Humongous contextual data are produced by sensing and computing devices (nodes) in distributed computing environments supporting inferential/predictive analytics. Nodes locally process and execute analytics tasks over contextual data. Demanding inferential analytics are crucial for supporting local real-time applications, however, they deplete nodes' resources. We contribute with a distributed methodology that pushes the task allocation decision at the network edge by intelligently scheduling and distributing analytics tasks among nodes. Each node autonomously decides whether the tasks are conditionally executed locally, or in networked neighboring nodes, or delegated to the Cloud based on the current nodes' context and statistical data relevance. We comprehensively evaluate our methodology demonstrating its applicability in edge computing environments.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In-Network Decision Making Intelligence for Task Allocation in Edge Computing
Humongous contextual data are produced by sensing and computing devices (nodes) in distributed computing environments supporting inferential/predictive analytics. Nodes locally process and execute analytics tasks over contextual data. Demanding inferential analytics are crucial for supporting local real-time applications, however, they deplete nodes' resources. We contribute with a distributed methodology that pushes the task allocation decision at the network edge by intelligently scheduling and distributing analytics tasks among nodes. Each node autonomously decides whether the tasks are conditionally executed locally, or in networked neighboring nodes, or delegated to the Cloud based on the current nodes' context and statistical data relevance. We comprehensively evaluate our methodology demonstrating its applicability in edge computing environments.