卷积神经网络在无人机声音分类中的应用

Donghyun Lim, HeonGyeom Kim, SangGi Hong, Sanghee Lee, GaYoung Kim, Austin Snail, Lucy Gotwals, John C. Gallagher
{"title":"卷积神经网络在无人机声音分类中的应用","authors":"Donghyun Lim, HeonGyeom Kim, SangGi Hong, Sanghee Lee, GaYoung Kim, Austin Snail, Lucy Gotwals, John C. Gallagher","doi":"10.1109/IRC.2018.00051","DOIUrl":null,"url":null,"abstract":"In this work, we analyze the effectiveness of a simple neural network for the task of determining, by sound, if small unmanned vehicles are carrying potentially harmful payloads The goal of this work is to contribute to a real-time UAV detection system that requires a means of assessing threat level of incoming vehicles whose positions are determined by other sensors. Further, we operated under a minimal cost constraints to enable eventual adoption at scale by law enforcement agencies. Our system classifies payload carrying vs. non-payload carrying DJI Phantom II UAVs by presenting sound spectrum data to a simple Convolutional Neural Networks (CNN). These networks, along with a simple voting system, provided a 99.92% recognition rate for this problem without a need to violate our minimal cost constraint.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Practically Classifying Unmanned Aerial Vehicles Sound Using Convolutional Neural Networks\",\"authors\":\"Donghyun Lim, HeonGyeom Kim, SangGi Hong, Sanghee Lee, GaYoung Kim, Austin Snail, Lucy Gotwals, John C. Gallagher\",\"doi\":\"10.1109/IRC.2018.00051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we analyze the effectiveness of a simple neural network for the task of determining, by sound, if small unmanned vehicles are carrying potentially harmful payloads The goal of this work is to contribute to a real-time UAV detection system that requires a means of assessing threat level of incoming vehicles whose positions are determined by other sensors. Further, we operated under a minimal cost constraints to enable eventual adoption at scale by law enforcement agencies. Our system classifies payload carrying vs. non-payload carrying DJI Phantom II UAVs by presenting sound spectrum data to a simple Convolutional Neural Networks (CNN). These networks, along with a simple voting system, provided a 99.92% recognition rate for this problem without a need to violate our minimal cost constraint.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在这项工作中,我们分析了一个简单的神经网络的有效性,通过声音确定小型无人驾驶车辆是否携带潜在有害的有效载荷。这项工作的目标是为实时无人机探测系统做出贡献,该系统需要一种评估进入车辆的威胁级别的方法,这些车辆的位置由其他传感器确定。此外,我们在最低成本限制下运作,使执法机构最终能够大规模采用。我们的系统通过向简单的卷积神经网络(CNN)提供声音频谱数据,对携带有效载荷与不携带有效载荷的大疆幻影II无人机进行分类。这些网络,加上一个简单的投票系统,在不违反我们的最小成本约束的情况下,为这个问题提供了99.92%的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practically Classifying Unmanned Aerial Vehicles Sound Using Convolutional Neural Networks
In this work, we analyze the effectiveness of a simple neural network for the task of determining, by sound, if small unmanned vehicles are carrying potentially harmful payloads The goal of this work is to contribute to a real-time UAV detection system that requires a means of assessing threat level of incoming vehicles whose positions are determined by other sensors. Further, we operated under a minimal cost constraints to enable eventual adoption at scale by law enforcement agencies. Our system classifies payload carrying vs. non-payload carrying DJI Phantom II UAVs by presenting sound spectrum data to a simple Convolutional Neural Networks (CNN). These networks, along with a simple voting system, provided a 99.92% recognition rate for this problem without a need to violate our minimal cost constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1