I. M. D. Susila, Yohanes Priyo Atmojo, Ni Luh Putri Srinadi, Ida Bagus Suradarma, Lilis Yuningsih, Erma Sulistyo Rini
{"title":"新冠肺炎疫情期间旅游数据三重指数平滑法性能分析","authors":"I. M. D. Susila, Yohanes Priyo Atmojo, Ni Luh Putri Srinadi, Ida Bagus Suradarma, Lilis Yuningsih, Erma Sulistyo Rini","doi":"10.1109/ICISIT54091.2022.9872863","DOIUrl":null,"url":null,"abstract":"Data forecasting methods are essential in the business world to determine the company’s future steps. However, the COVID-19 pandemic has hit the tourism economy hard, resulting in a slump in income. In this study, trials were conducted to analyze the reliability of forecasting methods on data affected by the COVID-19 pandemic. The method used is the Triple Exponential Smoothing method involving two models, namely Additive and Multiplicative. In this paper, the test is carried out using actual data derived from data from a service company engaged in tourist crossing transportation. Each method’s alpha, beta, and gamma values are determined based on the parameters that produce the smallest error value. The experiment results show the predictability of the Triple Exponential Smoothing method by measuring the prediction error value based on the Mean Absolute Percentage Error (MAPE) value, which was 7.56% in the Additive model and 10.32% in the Multiplicative model before the pandemic happened. However, both methods’ prediction measurements during a pandemic produce poor forecasts with an error percentage above 40%. Meanwhile, during the decline in pandemic cases, the value of the Triple Exponential Smoothing Multiplicative method was closer to the actual data with a prediction error value of 33.02%. Therefore, the Triple Exponential Smoothing Multiplicative method is more resistant and suitable for implementing into a forecasting system with actual data that influences pandemic events.","PeriodicalId":214014,"journal":{"name":"2022 1st International Conference on Information System & Information Technology (ICISIT)","volume":"210 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of the Triple Exponential Smoothing Method During the Covid19 Pandemic on Tourist Visit Data\",\"authors\":\"I. M. D. Susila, Yohanes Priyo Atmojo, Ni Luh Putri Srinadi, Ida Bagus Suradarma, Lilis Yuningsih, Erma Sulistyo Rini\",\"doi\":\"10.1109/ICISIT54091.2022.9872863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data forecasting methods are essential in the business world to determine the company’s future steps. However, the COVID-19 pandemic has hit the tourism economy hard, resulting in a slump in income. In this study, trials were conducted to analyze the reliability of forecasting methods on data affected by the COVID-19 pandemic. The method used is the Triple Exponential Smoothing method involving two models, namely Additive and Multiplicative. In this paper, the test is carried out using actual data derived from data from a service company engaged in tourist crossing transportation. Each method’s alpha, beta, and gamma values are determined based on the parameters that produce the smallest error value. The experiment results show the predictability of the Triple Exponential Smoothing method by measuring the prediction error value based on the Mean Absolute Percentage Error (MAPE) value, which was 7.56% in the Additive model and 10.32% in the Multiplicative model before the pandemic happened. However, both methods’ prediction measurements during a pandemic produce poor forecasts with an error percentage above 40%. Meanwhile, during the decline in pandemic cases, the value of the Triple Exponential Smoothing Multiplicative method was closer to the actual data with a prediction error value of 33.02%. Therefore, the Triple Exponential Smoothing Multiplicative method is more resistant and suitable for implementing into a forecasting system with actual data that influences pandemic events.\",\"PeriodicalId\":214014,\"journal\":{\"name\":\"2022 1st International Conference on Information System & Information Technology (ICISIT)\",\"volume\":\"210 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 1st International Conference on Information System & Information Technology (ICISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIT54091.2022.9872863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 1st International Conference on Information System & Information Technology (ICISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIT54091.2022.9872863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Analysis of the Triple Exponential Smoothing Method During the Covid19 Pandemic on Tourist Visit Data
Data forecasting methods are essential in the business world to determine the company’s future steps. However, the COVID-19 pandemic has hit the tourism economy hard, resulting in a slump in income. In this study, trials were conducted to analyze the reliability of forecasting methods on data affected by the COVID-19 pandemic. The method used is the Triple Exponential Smoothing method involving two models, namely Additive and Multiplicative. In this paper, the test is carried out using actual data derived from data from a service company engaged in tourist crossing transportation. Each method’s alpha, beta, and gamma values are determined based on the parameters that produce the smallest error value. The experiment results show the predictability of the Triple Exponential Smoothing method by measuring the prediction error value based on the Mean Absolute Percentage Error (MAPE) value, which was 7.56% in the Additive model and 10.32% in the Multiplicative model before the pandemic happened. However, both methods’ prediction measurements during a pandemic produce poor forecasts with an error percentage above 40%. Meanwhile, during the decline in pandemic cases, the value of the Triple Exponential Smoothing Multiplicative method was closer to the actual data with a prediction error value of 33.02%. Therefore, the Triple Exponential Smoothing Multiplicative method is more resistant and suitable for implementing into a forecasting system with actual data that influences pandemic events.