{"title":"考虑开关损耗和高频谐波的固定和自适应迟滞电流控制综述与仿真","authors":"H. Vahedi, A. Sheikholeslami, M. Bina, M. Vahedi","doi":"10.1155/2011/397872","DOIUrl":null,"url":null,"abstract":"Hysteresis Current Control (HCC) is widely used due to its simplicity in implementation, fast and accurate response. However, the main issue is its variable switching frequency which leads to extraswitching losses and injecting high-frequency harmonics into the system current. To solve this problem, adaptive hysteresis current control (AHCC) has been introduced which produces hysteresis bandwidth which instantaneously results in smoother and constant switching frequency. In this paper the instantaneous power theory is used to extract the harmonic components of system current. Then fixed-band hysteresis current control is explained. Because of fixed-band variable frequency disadvantages, the adaptive hysteresis current control is explained that leads to fixing the switching frequency and reducing the high-frequency components in source current waveform. Due to these advantages of AHCC, the switching frequency and switching losses will be diminished appropriately. Some simulations are done in MATLAB/Simulink. The Fourier Transform and THD results of source and load currents and the instantaneous switching frequency diagram are discussed to prove the efficiency of this method. The Fourier Transform and THD results of source and load currents are discussed to prove the validity of this method.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Review and Simulation of Fixed and Adaptive Hysteresis Current Control Considering Switching Losses and High-Frequency Harmonics\",\"authors\":\"H. Vahedi, A. Sheikholeslami, M. Bina, M. Vahedi\",\"doi\":\"10.1155/2011/397872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hysteresis Current Control (HCC) is widely used due to its simplicity in implementation, fast and accurate response. However, the main issue is its variable switching frequency which leads to extraswitching losses and injecting high-frequency harmonics into the system current. To solve this problem, adaptive hysteresis current control (AHCC) has been introduced which produces hysteresis bandwidth which instantaneously results in smoother and constant switching frequency. In this paper the instantaneous power theory is used to extract the harmonic components of system current. Then fixed-band hysteresis current control is explained. Because of fixed-band variable frequency disadvantages, the adaptive hysteresis current control is explained that leads to fixing the switching frequency and reducing the high-frequency components in source current waveform. Due to these advantages of AHCC, the switching frequency and switching losses will be diminished appropriately. Some simulations are done in MATLAB/Simulink. The Fourier Transform and THD results of source and load currents and the instantaneous switching frequency diagram are discussed to prove the efficiency of this method. The Fourier Transform and THD results of source and load currents are discussed to prove the validity of this method.\",\"PeriodicalId\":412593,\"journal\":{\"name\":\"Advances in Power Electronic\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Power Electronic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2011/397872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Power Electronic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2011/397872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Review and Simulation of Fixed and Adaptive Hysteresis Current Control Considering Switching Losses and High-Frequency Harmonics
Hysteresis Current Control (HCC) is widely used due to its simplicity in implementation, fast and accurate response. However, the main issue is its variable switching frequency which leads to extraswitching losses and injecting high-frequency harmonics into the system current. To solve this problem, adaptive hysteresis current control (AHCC) has been introduced which produces hysteresis bandwidth which instantaneously results in smoother and constant switching frequency. In this paper the instantaneous power theory is used to extract the harmonic components of system current. Then fixed-band hysteresis current control is explained. Because of fixed-band variable frequency disadvantages, the adaptive hysteresis current control is explained that leads to fixing the switching frequency and reducing the high-frequency components in source current waveform. Due to these advantages of AHCC, the switching frequency and switching losses will be diminished appropriately. Some simulations are done in MATLAB/Simulink. The Fourier Transform and THD results of source and load currents and the instantaneous switching frequency diagram are discussed to prove the efficiency of this method. The Fourier Transform and THD results of source and load currents are discussed to prove the validity of this method.