标准粒子群优化的CUDA实现

M. M. Hussain, H. Hattori, N. Fujimoto
{"title":"标准粒子群优化的CUDA实现","authors":"M. M. Hussain, H. Hattori, N. Fujimoto","doi":"10.1109/SYNASC.2016.043","DOIUrl":null,"url":null,"abstract":"The social learning process of birds and fishesinspired the development of the heuristic Particle Swarm Optimization (PSO) search algorithm. The advancement of GraphicsProcessing Units (GPU) and the Compute Unified Device Architecture (CUDA) platform plays a significant role to reduce thecomputational time in search algorithm development. This paperpresents a good implementation for the Standard Particle SwarmOptimization (SPSO) on a GPU based on the CUDA architecture, which uses coalescing memory access. The algorithm is evaluatedon a suite of well-known benchmark optimization functions. Theexperiments are performed on an NVIDIA GeForce GTX 980GPU and a single core of 3.20 GHz Intel Core i5 4570 CPUand the test results demonstrate that the GPU algorithm runsabout maximum 46 times faster than the corresponding CPUalgorithm. Therefore, this proposed algorithm can be used toimprove required time to solve optimization problems.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"A CUDA Implementation of the Standard Particle Swarm Optimization\",\"authors\":\"M. M. Hussain, H. Hattori, N. Fujimoto\",\"doi\":\"10.1109/SYNASC.2016.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The social learning process of birds and fishesinspired the development of the heuristic Particle Swarm Optimization (PSO) search algorithm. The advancement of GraphicsProcessing Units (GPU) and the Compute Unified Device Architecture (CUDA) platform plays a significant role to reduce thecomputational time in search algorithm development. This paperpresents a good implementation for the Standard Particle SwarmOptimization (SPSO) on a GPU based on the CUDA architecture, which uses coalescing memory access. The algorithm is evaluatedon a suite of well-known benchmark optimization functions. Theexperiments are performed on an NVIDIA GeForce GTX 980GPU and a single core of 3.20 GHz Intel Core i5 4570 CPUand the test results demonstrate that the GPU algorithm runsabout maximum 46 times faster than the corresponding CPUalgorithm. Therefore, this proposed algorithm can be used toimprove required time to solve optimization problems.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

鸟类和鱼类的社会学习过程启发了启发式粒子群优化(PSO)搜索算法的发展。图形处理单元(GPU)和计算统一设备架构(CUDA)平台的进步对减少搜索算法开发中的计算时间起着重要的作用。本文提出了一种在基于CUDA架构的GPU上实现标准粒子群优化(SPSO)的方法,该方法使用聚并内存访问。该算法在一套著名的基准优化函数上进行了评估。在NVIDIA GeForce GTX 980GPU和单核3.20 GHz Intel酷睿i5 4570 cpu上进行了实验,测试结果表明,GPU算法比相应的cpu算法运行速度最高快46倍。因此,所提出的算法可以用来缩短求解优化问题所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A CUDA Implementation of the Standard Particle Swarm Optimization
The social learning process of birds and fishesinspired the development of the heuristic Particle Swarm Optimization (PSO) search algorithm. The advancement of GraphicsProcessing Units (GPU) and the Compute Unified Device Architecture (CUDA) platform plays a significant role to reduce thecomputational time in search algorithm development. This paperpresents a good implementation for the Standard Particle SwarmOptimization (SPSO) on a GPU based on the CUDA architecture, which uses coalescing memory access. The algorithm is evaluatedon a suite of well-known benchmark optimization functions. Theexperiments are performed on an NVIDIA GeForce GTX 980GPU and a single core of 3.20 GHz Intel Core i5 4570 CPUand the test results demonstrate that the GPU algorithm runsabout maximum 46 times faster than the corresponding CPUalgorithm. Therefore, this proposed algorithm can be used toimprove required time to solve optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1