不确定条件下粗体信号反卷积HÆModynamics:一种半盲方法

Y. Farouj, F. I. Karahanoğlu, D. Ville
{"title":"不确定条件下粗体信号反卷积HÆModynamics:一种半盲方法","authors":"Y. Farouj, F. I. Karahanoğlu, D. Ville","doi":"10.1109/ISBI.2019.8759248","DOIUrl":null,"url":null,"abstract":"The investigation of spontaneous and evoked neuronal activity from functional Magnetic Resonance Imaging (fMRI) data has come to play a significant role in deepening our understanding of brain function. As this research trend continues, activity detection metthat can adapt to different activation scenarios must be developed. The present work describes a new method for temporal semi-blind deconvolution of fMRI data; i.e., undo temporal signals from the effect of the Hæmodynamic Response Function (HRF), in the absence of information about the timing and duration of neuronal events and under uncertain characterization of cerebral hæmodynamics. A sequential minimization of two functionals is deployed: the first functional recovers activity signals with sparse transients while the second exploits the retrieved activity moments to estimate the Taylor expansion coefficients of the HRF. These coefficients are inherently linked to two values of interests that characterize the hæmodynamics: time-to-peak and the width of the response. We evaluate the performances of the method on synthetic signals before demonstrating its potential on experimental measurements from the visual cortex.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bold Signal Deconvolution Under Uncertain HÆModynamics: A Semi-Blind Approach\",\"authors\":\"Y. Farouj, F. I. Karahanoğlu, D. Ville\",\"doi\":\"10.1109/ISBI.2019.8759248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation of spontaneous and evoked neuronal activity from functional Magnetic Resonance Imaging (fMRI) data has come to play a significant role in deepening our understanding of brain function. As this research trend continues, activity detection metthat can adapt to different activation scenarios must be developed. The present work describes a new method for temporal semi-blind deconvolution of fMRI data; i.e., undo temporal signals from the effect of the Hæmodynamic Response Function (HRF), in the absence of information about the timing and duration of neuronal events and under uncertain characterization of cerebral hæmodynamics. A sequential minimization of two functionals is deployed: the first functional recovers activity signals with sparse transients while the second exploits the retrieved activity moments to estimate the Taylor expansion coefficients of the HRF. These coefficients are inherently linked to two values of interests that characterize the hæmodynamics: time-to-peak and the width of the response. We evaluate the performances of the method on synthetic signals before demonstrating its potential on experimental measurements from the visual cortex.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

功能性磁共振成像(fMRI)数据对自发和诱发神经元活动的研究在加深我们对脑功能的理解方面发挥了重要作用。随着这一研究趋势的发展,必须开发出能够适应不同激活场景的活动检测方法。本工作描述了一种对fMRI数据进行时域半盲反褶积的新方法;即,在没有关于神经元事件的时间和持续时间的信息以及大脑hæmodynamics特征不确定的情况下,从Hæmodynamic响应函数(HRF)的影响中撤销时间信号。部署了两个函数的顺序最小化:第一个函数恢复具有稀疏瞬态的活动信号,而第二个函数利用检索到的活动矩来估计HRF的泰勒展开系数。这些系数与表征hæ动力学的两个兴趣值内在地联系在一起:峰值时间和响应宽度。我们评估了该方法在合成信号上的性能,然后展示了它在视觉皮层实验测量上的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bold Signal Deconvolution Under Uncertain HÆModynamics: A Semi-Blind Approach
The investigation of spontaneous and evoked neuronal activity from functional Magnetic Resonance Imaging (fMRI) data has come to play a significant role in deepening our understanding of brain function. As this research trend continues, activity detection metthat can adapt to different activation scenarios must be developed. The present work describes a new method for temporal semi-blind deconvolution of fMRI data; i.e., undo temporal signals from the effect of the Hæmodynamic Response Function (HRF), in the absence of information about the timing and duration of neuronal events and under uncertain characterization of cerebral hæmodynamics. A sequential minimization of two functionals is deployed: the first functional recovers activity signals with sparse transients while the second exploits the retrieved activity moments to estimate the Taylor expansion coefficients of the HRF. These coefficients are inherently linked to two values of interests that characterize the hæmodynamics: time-to-peak and the width of the response. We evaluate the performances of the method on synthetic signals before demonstrating its potential on experimental measurements from the visual cortex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1