异常基因在时间序列数据中作为乳腺癌生存能力的生物标志物

Naveen Mangalakumar, A. Alkhateeb, H. Pham, L. Rueda, A. Ngom
{"title":"异常基因在时间序列数据中作为乳腺癌生存能力的生物标志物","authors":"Naveen Mangalakumar, A. Alkhateeb, H. Pham, L. Rueda, A. Ngom","doi":"10.1145/3107411.3108202","DOIUrl":null,"url":null,"abstract":"Studying gene expression through various time intervals of breast cancer survival may provide new insights into the recovery from the disease. In this work, we propose a hierarchical clustering method to separate dissimilar groups of gene time-series profiles, which have the furthest distances from the rest of the profiles throughout different time intervals. The isolated outliers can be used as potential biomarkers of Breast Cancer survivability. Gene expressions throughout those time points are cubic spline interpolated to create a trending profile for each gene. After universally aligning the profiles to minimize the vertical area between each pair of profiles, we cluster the genes using hierarchical clustering based on minimized vertical distances [1]. An appropriate number of clusters was chosen based on the profile alignment and agglomerative clustering (PAAC) index as well as visual observations of the clusters. Our study suggests that the combination of proper clustering, distance function and index validation for clusters is a suitable model to identify genes as informative biomarkers of breast cancer survivability.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Outlier Genes as Biomarkers of Breast Cancer Survivability in Time-Series Data\",\"authors\":\"Naveen Mangalakumar, A. Alkhateeb, H. Pham, L. Rueda, A. Ngom\",\"doi\":\"10.1145/3107411.3108202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studying gene expression through various time intervals of breast cancer survival may provide new insights into the recovery from the disease. In this work, we propose a hierarchical clustering method to separate dissimilar groups of gene time-series profiles, which have the furthest distances from the rest of the profiles throughout different time intervals. The isolated outliers can be used as potential biomarkers of Breast Cancer survivability. Gene expressions throughout those time points are cubic spline interpolated to create a trending profile for each gene. After universally aligning the profiles to minimize the vertical area between each pair of profiles, we cluster the genes using hierarchical clustering based on minimized vertical distances [1]. An appropriate number of clusters was chosen based on the profile alignment and agglomerative clustering (PAAC) index as well as visual observations of the clusters. Our study suggests that the combination of proper clustering, distance function and index validation for clusters is a suitable model to identify genes as informative biomarkers of breast cancer survivability.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3108202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过乳腺癌生存的不同时间间隔研究基因表达可能为从疾病中恢复提供新的见解。在这项工作中,我们提出了一种分层聚类方法来分离不同的基因时间序列谱,这些基因时间序列谱在不同的时间间隔内与其他谱距离最远。孤立的异常值可作为乳腺癌生存能力的潜在生物标志物。在这些时间点上的基因表达被三次样条插值,以创建每个基因的趋势剖面。在普遍对齐基因图谱以最小化每对基因图谱之间的垂直面积后,我们使用基于最小化垂直距离的分层聚类方法对基因进行聚类[1]。根据聚类指数(PAAC)和对聚类的视觉观察,选择合适的聚类数量。我们的研究表明,结合适当的聚类、距离函数和聚类的指数验证是一种合适的模型,可以识别基因作为乳腺癌生存能力的信息生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Outlier Genes as Biomarkers of Breast Cancer Survivability in Time-Series Data
Studying gene expression through various time intervals of breast cancer survival may provide new insights into the recovery from the disease. In this work, we propose a hierarchical clustering method to separate dissimilar groups of gene time-series profiles, which have the furthest distances from the rest of the profiles throughout different time intervals. The isolated outliers can be used as potential biomarkers of Breast Cancer survivability. Gene expressions throughout those time points are cubic spline interpolated to create a trending profile for each gene. After universally aligning the profiles to minimize the vertical area between each pair of profiles, we cluster the genes using hierarchical clustering based on minimized vertical distances [1]. An appropriate number of clusters was chosen based on the profile alignment and agglomerative clustering (PAAC) index as well as visual observations of the clusters. Our study suggests that the combination of proper clustering, distance function and index validation for clusters is a suitable model to identify genes as informative biomarkers of breast cancer survivability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Free Text into MedDRA by Natural Language Processing: A Modular Approach in Designing and Evaluating Software Extensions Evolving Conformation Paths to Model Protein Structural Transitions Supervised Machine Learning Approaches Predict and Characterize Nanomaterial Exposures: MWCNT Markers in Lung Lavage Fluid. Geometry Analysis for Protein Secondary Structures Matching Problem Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1