Giuseppe Portaluri, Marialaura Tamburello, S. Giordano
{"title":"从传感器到云:垂直集成的实时用例","authors":"Giuseppe Portaluri, Marialaura Tamburello, S. Giordano","doi":"10.1109/DS-RT47707.2019.8958685","DOIUrl":null,"url":null,"abstract":"We present a vertical integration of a real-time Industrial Internet of Things environment with Cloud computing functionalities. We designed our testbed to implement self-adaptive wings for motorbikes using pressure values sensed in specific locations of the motorbike as input data collected exploiting open-hardware devices called OpenMotes which communicate through a low-power, delay-constrained wireless network based on the 6LoWPAN protocol stack. Our real-time on-board unit elaborates the data, and it computes the new angle of attack of two wings. The total response time of the system is in the order of 100 ms and meets the real-time requirements that constrains our scenario. Finally, we integrate our system with Cloud functionalities that we use for storing the acquired data on a time-series database.","PeriodicalId":377914,"journal":{"name":"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"From Sensors to the Cloud: a Real-Time Use-case on Vertical Integration\",\"authors\":\"Giuseppe Portaluri, Marialaura Tamburello, S. Giordano\",\"doi\":\"10.1109/DS-RT47707.2019.8958685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a vertical integration of a real-time Industrial Internet of Things environment with Cloud computing functionalities. We designed our testbed to implement self-adaptive wings for motorbikes using pressure values sensed in specific locations of the motorbike as input data collected exploiting open-hardware devices called OpenMotes which communicate through a low-power, delay-constrained wireless network based on the 6LoWPAN protocol stack. Our real-time on-board unit elaborates the data, and it computes the new angle of attack of two wings. The total response time of the system is in the order of 100 ms and meets the real-time requirements that constrains our scenario. Finally, we integrate our system with Cloud functionalities that we use for storing the acquired data on a time-series database.\",\"PeriodicalId\":377914,\"journal\":{\"name\":\"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DS-RT47707.2019.8958685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DS-RT47707.2019.8958685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From Sensors to the Cloud: a Real-Time Use-case on Vertical Integration
We present a vertical integration of a real-time Industrial Internet of Things environment with Cloud computing functionalities. We designed our testbed to implement self-adaptive wings for motorbikes using pressure values sensed in specific locations of the motorbike as input data collected exploiting open-hardware devices called OpenMotes which communicate through a low-power, delay-constrained wireless network based on the 6LoWPAN protocol stack. Our real-time on-board unit elaborates the data, and it computes the new angle of attack of two wings. The total response time of the system is in the order of 100 ms and meets the real-time requirements that constrains our scenario. Finally, we integrate our system with Cloud functionalities that we use for storing the acquired data on a time-series database.