关键词地图:基于注意力的关键词分析视觉探索

Yamei Tu, Jiayi Xu, Han-Wei Shen
{"title":"关键词地图:基于注意力的关键词分析视觉探索","authors":"Yamei Tu, Jiayi Xu, Han-Wei Shen","doi":"10.1109/PacificVis52677.2021.00034","DOIUrl":null,"url":null,"abstract":"With the high growth rate of text data, extracting meaningful information from a large corpus becomes increasingly difficult. Keyword extraction and analysis is a common approach to tackle the problem, but it is non-trivial to identify important words in the text and represent the multifaceted properties of those words effectively. Traditional topic modeling based keyword analysis algorithms require hyper-parameters which are often difficult to tune without enough prior knowledge. In addition, the relationships among the keywords are often difficult to obtain. In this paper, we utilize the attention scores extracted from Transformer-based language models to capture word relationships. We propose a domain-driven attention tuning method, guiding the attention to learn domain-specific word relationships. From the attention, we build a keyword network and propose a novel algorithm, Attention-based Word Influence (AWI), to compute how influential each word is in the network. An interactive visual analytics system, KeywordMap, is developed to support multi-level analysis of keywords and keyword relationships through coordinated views. We measure the quality of keywords captured by our AWI algorithm quantitatively. We also evaluate the usefulness and effectiveness of KeywordMap through case studies.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"KeywordMap: Attention-based Visual Exploration for Keyword Analysis\",\"authors\":\"Yamei Tu, Jiayi Xu, Han-Wei Shen\",\"doi\":\"10.1109/PacificVis52677.2021.00034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the high growth rate of text data, extracting meaningful information from a large corpus becomes increasingly difficult. Keyword extraction and analysis is a common approach to tackle the problem, but it is non-trivial to identify important words in the text and represent the multifaceted properties of those words effectively. Traditional topic modeling based keyword analysis algorithms require hyper-parameters which are often difficult to tune without enough prior knowledge. In addition, the relationships among the keywords are often difficult to obtain. In this paper, we utilize the attention scores extracted from Transformer-based language models to capture word relationships. We propose a domain-driven attention tuning method, guiding the attention to learn domain-specific word relationships. From the attention, we build a keyword network and propose a novel algorithm, Attention-based Word Influence (AWI), to compute how influential each word is in the network. An interactive visual analytics system, KeywordMap, is developed to support multi-level analysis of keywords and keyword relationships through coordinated views. We measure the quality of keywords captured by our AWI algorithm quantitatively. We also evaluate the usefulness and effectiveness of KeywordMap through case studies.\",\"PeriodicalId\":199565,\"journal\":{\"name\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis52677.2021.00034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着文本数据的高速增长,从庞大的语料库中提取有意义的信息变得越来越困难。关键字提取和分析是解决这一问题的常用方法,但识别文本中的重要单词并有效地表示这些单词的多面属性并非易事。传统的基于主题建模的关键词分析算法需要超参数,如果没有足够的先验知识,这些超参数往往难以调优。此外,关键字之间的关系往往难以获得。在本文中,我们利用从基于transformer的语言模型中提取的注意力分数来捕获单词关系。我们提出了一种领域驱动的注意力调整方法,引导注意力学习特定于领域的词关系。从注意力出发,我们构建了一个关键词网络,并提出了一种新的算法——基于注意力的词影响力(AWI),来计算每个词在网络中的影响力。开发了交互式可视化分析系统KeywordMap,通过协调视图支持对关键字和关键字关系的多层次分析。我们定量地衡量AWI算法捕获的关键字的质量。我们还通过案例研究来评估KeywordMap的有用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
KeywordMap: Attention-based Visual Exploration for Keyword Analysis
With the high growth rate of text data, extracting meaningful information from a large corpus becomes increasingly difficult. Keyword extraction and analysis is a common approach to tackle the problem, but it is non-trivial to identify important words in the text and represent the multifaceted properties of those words effectively. Traditional topic modeling based keyword analysis algorithms require hyper-parameters which are often difficult to tune without enough prior knowledge. In addition, the relationships among the keywords are often difficult to obtain. In this paper, we utilize the attention scores extracted from Transformer-based language models to capture word relationships. We propose a domain-driven attention tuning method, guiding the attention to learn domain-specific word relationships. From the attention, we build a keyword network and propose a novel algorithm, Attention-based Word Influence (AWI), to compute how influential each word is in the network. An interactive visual analytics system, KeywordMap, is developed to support multi-level analysis of keywords and keyword relationships through coordinated views. We measure the quality of keywords captured by our AWI algorithm quantitatively. We also evaluate the usefulness and effectiveness of KeywordMap through case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADVISor: Automatic Visualization Answer for Natural-Language Question on Tabular Data An Extension of Empirical Orthogonal Functions for the Analysis of Time-Dependent 2D Scalar Field Ensembles Know-What and Know-Who: Document Searching and Exploration using Topic-Based Two-Mode Networks Louvain-based Multi-level Graph Drawing A Visual Analytics Approach for the Diagnosis of Heterogeneous and Multidimensional Machine Maintenance Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1