延迟参数化源的分离

Hassan Mortada, V. Mazet, C. Soussen, C. Collet
{"title":"延迟参数化源的分离","authors":"Hassan Mortada, V. Mazet, C. Soussen, C. Collet","doi":"10.23919/EUSIPCO.2017.8081374","DOIUrl":null,"url":null,"abstract":"This paper addresses the delayed (or anechoic) source separation problem in the case of parameterized deterministic sources. An alternating least square scheme is proposed to estimate the source parameters, the mixing coefficients and the delays. For the challenging delay parameter we adapt a sparse approximation strategy. A first algorithm considers discrete delays; then an extension, inspired by the recent sparse deconvolution literature, allows for continuous delay estimation. Numerical simulations demonstrate the effectiveness of the proposed algorithms compared to state-of-the-art methods for highly correlated Gaussian sources.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Separation of delayed parameterized sources\",\"authors\":\"Hassan Mortada, V. Mazet, C. Soussen, C. Collet\",\"doi\":\"10.23919/EUSIPCO.2017.8081374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the delayed (or anechoic) source separation problem in the case of parameterized deterministic sources. An alternating least square scheme is proposed to estimate the source parameters, the mixing coefficients and the delays. For the challenging delay parameter we adapt a sparse approximation strategy. A first algorithm considers discrete delays; then an extension, inspired by the recent sparse deconvolution literature, allows for continuous delay estimation. Numerical simulations demonstrate the effectiveness of the proposed algorithms compared to state-of-the-art methods for highly correlated Gaussian sources.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了参数化确定性信号源的延迟(或无回声)分离问题。提出了一种交替最小二乘格式来估计源参数、混合系数和时延。对于具有挑战性的延迟参数,我们采用了稀疏逼近策略。第一种算法考虑离散延迟;然后,在最近的稀疏反卷积文献的启发下,进行了扩展,允许连续延迟估计。数值模拟表明,与高度相关高斯源的最新方法相比,所提出的算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Separation of delayed parameterized sources
This paper addresses the delayed (or anechoic) source separation problem in the case of parameterized deterministic sources. An alternating least square scheme is proposed to estimate the source parameters, the mixing coefficients and the delays. For the challenging delay parameter we adapt a sparse approximation strategy. A first algorithm considers discrete delays; then an extension, inspired by the recent sparse deconvolution literature, allows for continuous delay estimation. Numerical simulations demonstrate the effectiveness of the proposed algorithms compared to state-of-the-art methods for highly correlated Gaussian sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1