基于关键帧选择和强化学习的自适应视觉跟踪

Ke Zhao, Yongan Lu, Zhizheng Zhang, Wei Wang
{"title":"基于关键帧选择和强化学习的自适应视觉跟踪","authors":"Ke Zhao, Yongan Lu, Zhizheng Zhang, Wei Wang","doi":"10.1109/IWECAI50956.2020.00039","DOIUrl":null,"url":null,"abstract":"When the appearance of a target changes dramatically, the traditional tracking methods can no longer be used for target tracking task. This paper proposes an adaptive visual tracking algorithm based on key frame selection and reinforcement learning (RL) to solve this problem. First of all, the probability value of the RL network output is analyzed, and the predicted value of output is normalized. At the model update stage of each frame, the probability value corresponding to the optimal behavior is judged. If it conforms to the preset rules, the last frame of the current frame is set as the key frame, and the network model is fine-tuned by using the key frame. The proposed algorithm is only fine-tuned in key frames to obtain multiple fixed prediction models. The experiment is conducted on 100 video sequences of the Object Tracking Benchmark to verify the effectiveness of key frame selection strategy. Compared with the original reinforcement learning based tracking algorithm, the tracking accuracy and the success rate of the proposed algorithm are improved respectively.","PeriodicalId":364789,"journal":{"name":"2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Visual Tracking Based on Key Frame Selection and Reinforcement Learning\",\"authors\":\"Ke Zhao, Yongan Lu, Zhizheng Zhang, Wei Wang\",\"doi\":\"10.1109/IWECAI50956.2020.00039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the appearance of a target changes dramatically, the traditional tracking methods can no longer be used for target tracking task. This paper proposes an adaptive visual tracking algorithm based on key frame selection and reinforcement learning (RL) to solve this problem. First of all, the probability value of the RL network output is analyzed, and the predicted value of output is normalized. At the model update stage of each frame, the probability value corresponding to the optimal behavior is judged. If it conforms to the preset rules, the last frame of the current frame is set as the key frame, and the network model is fine-tuned by using the key frame. The proposed algorithm is only fine-tuned in key frames to obtain multiple fixed prediction models. The experiment is conducted on 100 video sequences of the Object Tracking Benchmark to verify the effectiveness of key frame selection strategy. Compared with the original reinforcement learning based tracking algorithm, the tracking accuracy and the success rate of the proposed algorithm are improved respectively.\",\"PeriodicalId\":364789,\"journal\":{\"name\":\"2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWECAI50956.2020.00039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWECAI50956.2020.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

当目标的外形发生巨大变化时,传统的跟踪方法已不能满足目标跟踪任务的需要。本文提出了一种基于关键帧选择和强化学习的自适应视觉跟踪算法来解决这一问题。首先对RL网络输出的概率值进行分析,并对输出的预测值进行归一化处理。在每一帧的模型更新阶段,判断最优行为对应的概率值。如果符合预设规则,则将当前帧的最后一帧设置为关键帧,并使用该关键帧对网络模型进行微调。该算法仅对关键帧进行微调,以获得多个固定的预测模型。在目标跟踪基准的100个视频序列上进行了实验,验证了关键帧选择策略的有效性。与原有的基于强化学习的跟踪算法相比,本文算法的跟踪精度和成功率分别得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Visual Tracking Based on Key Frame Selection and Reinforcement Learning
When the appearance of a target changes dramatically, the traditional tracking methods can no longer be used for target tracking task. This paper proposes an adaptive visual tracking algorithm based on key frame selection and reinforcement learning (RL) to solve this problem. First of all, the probability value of the RL network output is analyzed, and the predicted value of output is normalized. At the model update stage of each frame, the probability value corresponding to the optimal behavior is judged. If it conforms to the preset rules, the last frame of the current frame is set as the key frame, and the network model is fine-tuned by using the key frame. The proposed algorithm is only fine-tuned in key frames to obtain multiple fixed prediction models. The experiment is conducted on 100 video sequences of the Object Tracking Benchmark to verify the effectiveness of key frame selection strategy. Compared with the original reinforcement learning based tracking algorithm, the tracking accuracy and the success rate of the proposed algorithm are improved respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Named Entity Recognition Method with Word Position Research on Application of Smart Agriculture in Cotton Production Management Path Analysis of Using Big Data to Innovate Archives Management Model and Improve Service Ability The Air-Ground Integrated MIMO Cooperative Relay Beamforming Wireless Ad-Hoc Network Technology Research That Based on Maximum Ratio Combining Research and Exploration of Virtual Simulation Laboratory in Private Colleges and Universities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1