基于遗传算法和两阶段抽样方案的概率电动汽车充电优化

S. Hutterer, M. Affenzeller
{"title":"基于遗传算法和两阶段抽样方案的概率电动汽车充电优化","authors":"S. Hutterer, M. Affenzeller","doi":"10.4018/ijeoe.2013070101","DOIUrl":null,"url":null,"abstract":"Probabilistic power flow studies represent essential challenges in nowadays power system operation and research. Here, especially the incorporation of intermittent supply plants with optimal control of dispatchable demand like electric vehicle charging power shows nondeterministic aspects. Using simulation-based optimization, such probabilistic and dynamic behavior can be fully integrated within the metaheuristic optimization process, yielding into a generic approach suitable for optimization in uncertain environments. A practical problem scenario is demonstrated that computes optimal charging schedules of a given electrified fleet in order to meet both power flow constraints of the distribution grid while satisfying vehicle-owners’ energy demand and considering stochastic supply of wind power plants. Since solution- evaluation through simulation is computational expensive, a new fitness-based sampling scheme will be proposed, that avoids unnecessary evaluations of less-performant solution candidates.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Probabilistic Electric Vehicle Charging Optimized With Genetic Algorithms and a Two-Stage Sampling Scheme\",\"authors\":\"S. Hutterer, M. Affenzeller\",\"doi\":\"10.4018/ijeoe.2013070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic power flow studies represent essential challenges in nowadays power system operation and research. Here, especially the incorporation of intermittent supply plants with optimal control of dispatchable demand like electric vehicle charging power shows nondeterministic aspects. Using simulation-based optimization, such probabilistic and dynamic behavior can be fully integrated within the metaheuristic optimization process, yielding into a generic approach suitable for optimization in uncertain environments. A practical problem scenario is demonstrated that computes optimal charging schedules of a given electrified fleet in order to meet both power flow constraints of the distribution grid while satisfying vehicle-owners’ energy demand and considering stochastic supply of wind power plants. Since solution- evaluation through simulation is computational expensive, a new fitness-based sampling scheme will be proposed, that avoids unnecessary evaluations of less-performant solution candidates.\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijeoe.2013070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2013070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

概率潮流研究是当今电力系统运行和研究的重要课题。在此,特别是纳入具有可调度需求最优控制的间歇性供电电站,如电动汽车充电功率,表现出不确定性。通过基于仿真的优化,这种概率和动态行为可以完全集成到元启发式优化过程中,从而产生一种适用于不确定环境下优化的通用方法。给出了一个实际问题场景,在满足配电网潮流约束的同时满足车主能源需求,并考虑风力发电厂的随机供应的情况下,计算给定电动车队的最优充电计划。由于通过模拟来评估解的计算成本很高,本文提出了一种新的基于适应度的采样方案,以避免对性能较差的候选解进行不必要的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic Electric Vehicle Charging Optimized With Genetic Algorithms and a Two-Stage Sampling Scheme
Probabilistic power flow studies represent essential challenges in nowadays power system operation and research. Here, especially the incorporation of intermittent supply plants with optimal control of dispatchable demand like electric vehicle charging power shows nondeterministic aspects. Using simulation-based optimization, such probabilistic and dynamic behavior can be fully integrated within the metaheuristic optimization process, yielding into a generic approach suitable for optimization in uncertain environments. A practical problem scenario is demonstrated that computes optimal charging schedules of a given electrified fleet in order to meet both power flow constraints of the distribution grid while satisfying vehicle-owners’ energy demand and considering stochastic supply of wind power plants. Since solution- evaluation through simulation is computational expensive, a new fitness-based sampling scheme will be proposed, that avoids unnecessary evaluations of less-performant solution candidates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Site Selection for Solar Photovoltaic Power Plant in North Eastern State of India using Hybrid MCDM Tools Security Constrained Optimal Reactive Power Dispatch Using Hybrid Particle Swarm Optimization and Differential Evolution Visible Light Communication System for Indoor Positioning Using Solar Cell as Receiver A New Central Control Scheme for Future Micro-Grid Systems Considering Variable Speed Drive Systems and Fuzzy Logic Control System Comparative Study of Two Different Converters with its Controller for Grid Connected WECS with PMSG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1