基于径向基函数的时变时滞系统极点配置控制设计

O. Albrecht, C. J. Taylor
{"title":"基于径向基函数的时变时滞系统极点配置控制设计","authors":"O. Albrecht, C. J. Taylor","doi":"10.1109/Control55989.2022.9781463","DOIUrl":null,"url":null,"abstract":"Systems with time-varying time delays present a particularly challenging control problem. They have been observed across a wide array of domains, from hydraulic actuators to insulin delivery control systems. Control systems that address system time-delays, nonlinearities and uncertainty are the subject of much research but, whilst the specific concept of varying time delays is sometimes acknowledged (for example in the control of hydraulic manipulators), this appears to be less widely investigated than some other types of nonlinearity. In part motivated by recent research into internal multi-model control, as similarly applied to systems with unknown time-varying delays, the present work utilises a Gaussian radial basis function to switch between two or more partial controllers. Each partial controller is based on a linear model with a (time-invariant) time delay. The new algorithm is developed and evaluated via simulation using a non-minimal state space (NMSS) framework, with pole assignment as the design criterion. Simulation results suggest that it yields improved performance in comparison to a simpler switching approach and the equivalent linear control system. However, laboratory examples and further research into robustness and stability is required in the next step.","PeriodicalId":101892,"journal":{"name":"2022 UKACC 13th International Conference on Control (CONTROL)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pole assignment control design for time–varying time–delay systems using radial basis functions\",\"authors\":\"O. Albrecht, C. J. Taylor\",\"doi\":\"10.1109/Control55989.2022.9781463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems with time-varying time delays present a particularly challenging control problem. They have been observed across a wide array of domains, from hydraulic actuators to insulin delivery control systems. Control systems that address system time-delays, nonlinearities and uncertainty are the subject of much research but, whilst the specific concept of varying time delays is sometimes acknowledged (for example in the control of hydraulic manipulators), this appears to be less widely investigated than some other types of nonlinearity. In part motivated by recent research into internal multi-model control, as similarly applied to systems with unknown time-varying delays, the present work utilises a Gaussian radial basis function to switch between two or more partial controllers. Each partial controller is based on a linear model with a (time-invariant) time delay. The new algorithm is developed and evaluated via simulation using a non-minimal state space (NMSS) framework, with pole assignment as the design criterion. Simulation results suggest that it yields improved performance in comparison to a simpler switching approach and the equivalent linear control system. However, laboratory examples and further research into robustness and stability is required in the next step.\",\"PeriodicalId\":101892,\"journal\":{\"name\":\"2022 UKACC 13th International Conference on Control (CONTROL)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 UKACC 13th International Conference on Control (CONTROL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Control55989.2022.9781463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 UKACC 13th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Control55989.2022.9781463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

具有时变时滞的系统提出了一个特别具有挑战性的控制问题。它们已经在广泛的领域被观察到,从液压致动器到胰岛素输送控制系统。解决系统时滞、非线性和不确定性的控制系统是许多研究的主题,但是,虽然有时承认变时滞的具体概念(例如在液压机械手的控制中),但这似乎比其他类型的非线性研究得更少。部分原因是由于最近对内部多模型控制的研究,同样适用于具有未知时变延迟的系统,目前的工作利用高斯径向基函数在两个或多个部分控制器之间切换。每个部分控制器都基于一个具有(时不变)时间延迟的线性模型。采用非最小状态空间(NMSS)框架,以极点配置为设计准则,对新算法进行了开发和仿真评估。仿真结果表明,与简单的开关方法和等效线性控制系统相比,该方法的性能有所提高。然而,下一步需要实验室实例和对鲁棒性和稳定性的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pole assignment control design for time–varying time–delay systems using radial basis functions
Systems with time-varying time delays present a particularly challenging control problem. They have been observed across a wide array of domains, from hydraulic actuators to insulin delivery control systems. Control systems that address system time-delays, nonlinearities and uncertainty are the subject of much research but, whilst the specific concept of varying time delays is sometimes acknowledged (for example in the control of hydraulic manipulators), this appears to be less widely investigated than some other types of nonlinearity. In part motivated by recent research into internal multi-model control, as similarly applied to systems with unknown time-varying delays, the present work utilises a Gaussian radial basis function to switch between two or more partial controllers. Each partial controller is based on a linear model with a (time-invariant) time delay. The new algorithm is developed and evaluated via simulation using a non-minimal state space (NMSS) framework, with pole assignment as the design criterion. Simulation results suggest that it yields improved performance in comparison to a simpler switching approach and the equivalent linear control system. However, laboratory examples and further research into robustness and stability is required in the next step.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game-Theoretic Approximate Solution of Nonlinear Optimal Control Problems New Paradigms in Traceable Process Control Thermometry Stationarity conditions in optimal control problems class related to dynamical objects group control Identification and Modeling of Wire Arc Additive Manufacturing under consideration of Interpass Temperature A linear regression variable time delay estimation algorithm for the analysis of hydraulic manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1