先进的飞秒激光涂层提高了损伤阈值

H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, M. Mende
{"title":"先进的飞秒激光涂层提高了损伤阈值","authors":"H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, M. Mende","doi":"10.1117/12.2191225","DOIUrl":null,"url":null,"abstract":"Advanced optical thin film design is the key to increase laser durability significantly: either by optimizing the electric field distribution within the coating, or by multi-index or rugate designs. Both ways may be even combined. The electric field distribution within a thin film stack was optimized to avoid peak intensities in critical layers using refractive index engineering and/or layer thickness grading. Femtosecond laser mirrors and dichroics for 780 nm and 390 nm were designed, realized and characterized. Here we present LIDT measurements of electric field optimized mirrors and dichroics, which are almost a factor of three higher compared to standard coating designs. At 780 nm a LIDT of 1.49 J/cm2 has been achieved and at 390 nm 0.58 J/cm2. With the exception of Al2O3, all investigated coating materials show a proportional dependence of the LIDT with electric field maximum, as expected by theory. For Al2O3 based systems the electrical field penetrates deep into the layer stack, a high number of interfaces are involved and interface effects probably limit the achievable LIDT. A similar effect was observed for rugate designs. To exclude such interface effects from the LIDT measurement, a special AR design was developed, which is practically equal for all high index materials. Here a LIDT above substrate damage threshold of 1.7 J/cm2 was achieved.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Advanced femtosecond laser coatings raise damage thresholds\",\"authors\":\"H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, M. Mende\",\"doi\":\"10.1117/12.2191225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced optical thin film design is the key to increase laser durability significantly: either by optimizing the electric field distribution within the coating, or by multi-index or rugate designs. Both ways may be even combined. The electric field distribution within a thin film stack was optimized to avoid peak intensities in critical layers using refractive index engineering and/or layer thickness grading. Femtosecond laser mirrors and dichroics for 780 nm and 390 nm were designed, realized and characterized. Here we present LIDT measurements of electric field optimized mirrors and dichroics, which are almost a factor of three higher compared to standard coating designs. At 780 nm a LIDT of 1.49 J/cm2 has been achieved and at 390 nm 0.58 J/cm2. With the exception of Al2O3, all investigated coating materials show a proportional dependence of the LIDT with electric field maximum, as expected by theory. For Al2O3 based systems the electrical field penetrates deep into the layer stack, a high number of interfaces are involved and interface effects probably limit the achievable LIDT. A similar effect was observed for rugate designs. To exclude such interface effects from the LIDT measurement, a special AR design was developed, which is practically equal for all high index materials. Here a LIDT above substrate damage threshold of 1.7 J/cm2 was achieved.\",\"PeriodicalId\":212434,\"journal\":{\"name\":\"SPIE Optical Systems Design\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optical Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2191225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

先进的光学薄膜设计是显著提高激光耐久性的关键:要么通过优化涂层内的电场分布,要么通过多折射率或规则设计。这两种方式甚至可以结合起来。利用折射率工程和/或层厚分级技术,优化了薄膜层内的电场分布,避免了关键层的峰值强度。设计、实现了780 nm和390 nm的飞秒激光反射镜和二色镜,并对其进行了表征。在这里,我们提出了电场优化镜和二色性的LIDT测量,与标准涂层设计相比,这几乎是三倍的因素。在780 nm处LIDT为1.49 J/cm2, 390 nm处LIDT为0.58 J/cm2。除Al2O3外,所有涂层材料的LIDT与电场最大值呈正比关系,与理论预期一致。对于基于Al2O3的系统,电场深入到层堆中,涉及大量界面,界面效应可能限制可实现的LIDT。在规则设计中也观察到类似的效果。为了从LIDT测量中排除这种界面效应,开发了一种特殊的AR设计,它实际上对所有高折射率材料都是相同的。在这里,LIDT达到了高于衬底损伤阈值的1.7 J/cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced femtosecond laser coatings raise damage thresholds
Advanced optical thin film design is the key to increase laser durability significantly: either by optimizing the electric field distribution within the coating, or by multi-index or rugate designs. Both ways may be even combined. The electric field distribution within a thin film stack was optimized to avoid peak intensities in critical layers using refractive index engineering and/or layer thickness grading. Femtosecond laser mirrors and dichroics for 780 nm and 390 nm were designed, realized and characterized. Here we present LIDT measurements of electric field optimized mirrors and dichroics, which are almost a factor of three higher compared to standard coating designs. At 780 nm a LIDT of 1.49 J/cm2 has been achieved and at 390 nm 0.58 J/cm2. With the exception of Al2O3, all investigated coating materials show a proportional dependence of the LIDT with electric field maximum, as expected by theory. For Al2O3 based systems the electrical field penetrates deep into the layer stack, a high number of interfaces are involved and interface effects probably limit the achievable LIDT. A similar effect was observed for rugate designs. To exclude such interface effects from the LIDT measurement, a special AR design was developed, which is practically equal for all high index materials. Here a LIDT above substrate damage threshold of 1.7 J/cm2 was achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation of laser radar tooling ball measurements: focus dependence Performance of silicon immersed gratings: measurement, analysis, and modeling High reflecting dielectric mirror coatings deposited with plasma assisted reactive magnetron sputtering Fluorescence and multilayer structure of the scorpion cuticle Multispectral thin film coating on infrared detector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1