H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, M. Mende
{"title":"先进的飞秒激光涂层提高了损伤阈值","authors":"H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, M. Mende","doi":"10.1117/12.2191225","DOIUrl":null,"url":null,"abstract":"Advanced optical thin film design is the key to increase laser durability significantly: either by optimizing the electric field distribution within the coating, or by multi-index or rugate designs. Both ways may be even combined. The electric field distribution within a thin film stack was optimized to avoid peak intensities in critical layers using refractive index engineering and/or layer thickness grading. Femtosecond laser mirrors and dichroics for 780 nm and 390 nm were designed, realized and characterized. Here we present LIDT measurements of electric field optimized mirrors and dichroics, which are almost a factor of three higher compared to standard coating designs. At 780 nm a LIDT of 1.49 J/cm2 has been achieved and at 390 nm 0.58 J/cm2. With the exception of Al2O3, all investigated coating materials show a proportional dependence of the LIDT with electric field maximum, as expected by theory. For Al2O3 based systems the electrical field penetrates deep into the layer stack, a high number of interfaces are involved and interface effects probably limit the achievable LIDT. A similar effect was observed for rugate designs. To exclude such interface effects from the LIDT measurement, a special AR design was developed, which is practically equal for all high index materials. Here a LIDT above substrate damage threshold of 1.7 J/cm2 was achieved.","PeriodicalId":212434,"journal":{"name":"SPIE Optical Systems Design","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Advanced femtosecond laser coatings raise damage thresholds\",\"authors\":\"H. Becker, D. Tonova, M. Sundermann, L. Jensen, M. Gyamfi, D. Ristau, M. Mende\",\"doi\":\"10.1117/12.2191225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced optical thin film design is the key to increase laser durability significantly: either by optimizing the electric field distribution within the coating, or by multi-index or rugate designs. Both ways may be even combined. The electric field distribution within a thin film stack was optimized to avoid peak intensities in critical layers using refractive index engineering and/or layer thickness grading. Femtosecond laser mirrors and dichroics for 780 nm and 390 nm were designed, realized and characterized. Here we present LIDT measurements of electric field optimized mirrors and dichroics, which are almost a factor of three higher compared to standard coating designs. At 780 nm a LIDT of 1.49 J/cm2 has been achieved and at 390 nm 0.58 J/cm2. With the exception of Al2O3, all investigated coating materials show a proportional dependence of the LIDT with electric field maximum, as expected by theory. For Al2O3 based systems the electrical field penetrates deep into the layer stack, a high number of interfaces are involved and interface effects probably limit the achievable LIDT. A similar effect was observed for rugate designs. To exclude such interface effects from the LIDT measurement, a special AR design was developed, which is practically equal for all high index materials. Here a LIDT above substrate damage threshold of 1.7 J/cm2 was achieved.\",\"PeriodicalId\":212434,\"journal\":{\"name\":\"SPIE Optical Systems Design\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optical Systems Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2191225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optical Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2191225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced optical thin film design is the key to increase laser durability significantly: either by optimizing the electric field distribution within the coating, or by multi-index or rugate designs. Both ways may be even combined. The electric field distribution within a thin film stack was optimized to avoid peak intensities in critical layers using refractive index engineering and/or layer thickness grading. Femtosecond laser mirrors and dichroics for 780 nm and 390 nm were designed, realized and characterized. Here we present LIDT measurements of electric field optimized mirrors and dichroics, which are almost a factor of three higher compared to standard coating designs. At 780 nm a LIDT of 1.49 J/cm2 has been achieved and at 390 nm 0.58 J/cm2. With the exception of Al2O3, all investigated coating materials show a proportional dependence of the LIDT with electric field maximum, as expected by theory. For Al2O3 based systems the electrical field penetrates deep into the layer stack, a high number of interfaces are involved and interface effects probably limit the achievable LIDT. A similar effect was observed for rugate designs. To exclude such interface effects from the LIDT measurement, a special AR design was developed, which is practically equal for all high index materials. Here a LIDT above substrate damage threshold of 1.7 J/cm2 was achieved.