基于rao - blackwell化粒子滤波的实时视觉SLAM框架设计与分析

Robert Sim, P. Elinas, Matt Griffin, Alex Shyr, J. Little
{"title":"基于rao - blackwell化粒子滤波的实时视觉SLAM框架设计与分析","authors":"Robert Sim, P. Elinas, Matt Griffin, Alex Shyr, J. Little","doi":"10.1109/CRV.2006.25","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of simultaneous localization and mapping (SLAM) using vision-based sensing. We present and analyse an implementation of a Rao- Blackwellised particle filter (RBPF) that uses stereo vision to localize a camera and 3D landmarks as the camera moves through an unknown environment. Our implementation is robust, can operate in real-time, and can operate without odometric or inertial measurements. Furthermore, our approach supports a 6-degree-of-freedom pose representation, vision-based ego-motion estimation, adaptive resampling, monocular operation, and a selection of odometry-based, observation-based, and mixture (combining local and global pose estimation) proposal distributions. This paper also examines the run-time behavior of efficiently designed RBPFs, providing an extensive empirical analysis of the memory and processing characteristics of RBPFs for vision-based SLAM. Finally, we present experimental results demonstrating the accuracy and efficiency of our approach.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"Design and analysis of a framework for real-time vision-based SLAM using Rao-Blackwellised particle filters\",\"authors\":\"Robert Sim, P. Elinas, Matt Griffin, Alex Shyr, J. Little\",\"doi\":\"10.1109/CRV.2006.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of simultaneous localization and mapping (SLAM) using vision-based sensing. We present and analyse an implementation of a Rao- Blackwellised particle filter (RBPF) that uses stereo vision to localize a camera and 3D landmarks as the camera moves through an unknown environment. Our implementation is robust, can operate in real-time, and can operate without odometric or inertial measurements. Furthermore, our approach supports a 6-degree-of-freedom pose representation, vision-based ego-motion estimation, adaptive resampling, monocular operation, and a selection of odometry-based, observation-based, and mixture (combining local and global pose estimation) proposal distributions. This paper also examines the run-time behavior of efficiently designed RBPFs, providing an extensive empirical analysis of the memory and processing characteristics of RBPFs for vision-based SLAM. Finally, we present experimental results demonstrating the accuracy and efficiency of our approach.\",\"PeriodicalId\":369170,\"journal\":{\"name\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2006.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

摘要

本文研究了基于视觉感知的同时定位与制图问题。我们提出并分析了Rao- blackwell化粒子滤波器(RBPF)的实现,该滤波器使用立体视觉来定位相机和3D地标,当相机在未知环境中移动时。我们的实现是鲁棒的,可以实时操作,并且可以在没有里程或惯性测量的情况下操作。此外,我们的方法支持6个自由度的姿态表示、基于视觉的自我运动估计、自适应重采样、单目操作,以及基于里程计、基于观测和混合(结合局部和全局姿态估计)的建议分布选择。本文还研究了高效设计的rbpf的运行时行为,对基于视觉SLAM的rbpf的记忆和处理特征进行了广泛的实证分析。最后,我们给出了实验结果,证明了我们的方法的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and analysis of a framework for real-time vision-based SLAM using Rao-Blackwellised particle filters
This paper addresses the problem of simultaneous localization and mapping (SLAM) using vision-based sensing. We present and analyse an implementation of a Rao- Blackwellised particle filter (RBPF) that uses stereo vision to localize a camera and 3D landmarks as the camera moves through an unknown environment. Our implementation is robust, can operate in real-time, and can operate without odometric or inertial measurements. Furthermore, our approach supports a 6-degree-of-freedom pose representation, vision-based ego-motion estimation, adaptive resampling, monocular operation, and a selection of odometry-based, observation-based, and mixture (combining local and global pose estimation) proposal distributions. This paper also examines the run-time behavior of efficiently designed RBPFs, providing an extensive empirical analysis of the memory and processing characteristics of RBPFs for vision-based SLAM. Finally, we present experimental results demonstrating the accuracy and efficiency of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image Classification and Retrieval using Correlation Photometric Stereo with Nearby Planar Distributed Illuminants Evolving a Vision-Based Line-Following Robot Controller Line Extraction with Composite Background Subtract The Nomad 200 and the Nomad SuperScout: Reverse engineered and resurrected
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1