{"title":"一种基于卡尔曼滤波的雷达航迹数据融合算法应用于某型洲际弹道导弹","authors":"J. Ferrante","doi":"10.1109/NRC.2004.1316468","DOIUrl":null,"url":null,"abstract":"A Kalman filter-based approach for fusing track data from two separate phased array radar sensors is developed and applied to a select ICBM case to demonstrate the potential enhancement of position and velocity estimates over a single radar. When compared to a theoretical assessment based on steady state filter performance, the Kalman filter approach yielded performance enhancements within 7% of theoretical prediction. The theoretical assessment indicated a 33% improvement in position accuracy and a 29% improvement in velocity accuracy for an assumed bias error in both radars. The simulation yielded a 29% improvement in position accuracy and a 22% improvement in velocity accuracy with the same bias assumption. The improvement was computed relative to the radar with twice the beamwidth and the same sensitivity as the second \"fused\" radar. The two radars were assumed to be collocated at the terminal area of ICBM flight.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Kalman filter-based radar track data fusion algorithm applied to a select ICBM case\",\"authors\":\"J. Ferrante\",\"doi\":\"10.1109/NRC.2004.1316468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Kalman filter-based approach for fusing track data from two separate phased array radar sensors is developed and applied to a select ICBM case to demonstrate the potential enhancement of position and velocity estimates over a single radar. When compared to a theoretical assessment based on steady state filter performance, the Kalman filter approach yielded performance enhancements within 7% of theoretical prediction. The theoretical assessment indicated a 33% improvement in position accuracy and a 29% improvement in velocity accuracy for an assumed bias error in both radars. The simulation yielded a 29% improvement in position accuracy and a 22% improvement in velocity accuracy with the same bias assumption. The improvement was computed relative to the radar with twice the beamwidth and the same sensitivity as the second \\\"fused\\\" radar. The two radars were assumed to be collocated at the terminal area of ICBM flight.\",\"PeriodicalId\":268965,\"journal\":{\"name\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2004.1316468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Kalman filter-based radar track data fusion algorithm applied to a select ICBM case
A Kalman filter-based approach for fusing track data from two separate phased array radar sensors is developed and applied to a select ICBM case to demonstrate the potential enhancement of position and velocity estimates over a single radar. When compared to a theoretical assessment based on steady state filter performance, the Kalman filter approach yielded performance enhancements within 7% of theoretical prediction. The theoretical assessment indicated a 33% improvement in position accuracy and a 29% improvement in velocity accuracy for an assumed bias error in both radars. The simulation yielded a 29% improvement in position accuracy and a 22% improvement in velocity accuracy with the same bias assumption. The improvement was computed relative to the radar with twice the beamwidth and the same sensitivity as the second "fused" radar. The two radars were assumed to be collocated at the terminal area of ICBM flight.