基于加权核范数正则化稀疏矩阵分解的高光谱图像融合

Jingjing Lu, Mingxi Ma
{"title":"基于加权核范数正则化稀疏矩阵分解的高光谱图像融合","authors":"Jingjing Lu, Mingxi Ma","doi":"10.1117/12.2682386","DOIUrl":null,"url":null,"abstract":"The fusion of a low spatial resolution hyperspectral image (LR-HSI) and a high spatial resolution multispectral image (HR-MSI) in the same scene is a common method to get a high spatial resolution hyperspectral image (HR-HSI). For the drawback that the standard nuclear norm regularization treats each singular value equally, this paper proposes a weighted nuclear norm model based on sparse matrix factorization (called WNNS) for hyperspectral image fusion. Specifically, we promote the sparsity of fused images by adding the ℓ1 norm of coefficients. Furthermore, to preserve important data components, we combine with the weighted nuclear norm regularization, where different weights are given to singular values. To efficiently solve the proposed model, we apply an alternating direction method of multipliers (ADMM). Experiments show that the proposed method has better performances in terms of numerical results and visual effects.","PeriodicalId":440430,"journal":{"name":"International Conference on Electronic Technology and Information Science","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperspectral image fusion via weighted nuclear norm regularized sparse matrix factorization\",\"authors\":\"Jingjing Lu, Mingxi Ma\",\"doi\":\"10.1117/12.2682386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fusion of a low spatial resolution hyperspectral image (LR-HSI) and a high spatial resolution multispectral image (HR-MSI) in the same scene is a common method to get a high spatial resolution hyperspectral image (HR-HSI). For the drawback that the standard nuclear norm regularization treats each singular value equally, this paper proposes a weighted nuclear norm model based on sparse matrix factorization (called WNNS) for hyperspectral image fusion. Specifically, we promote the sparsity of fused images by adding the ℓ1 norm of coefficients. Furthermore, to preserve important data components, we combine with the weighted nuclear norm regularization, where different weights are given to singular values. To efficiently solve the proposed model, we apply an alternating direction method of multipliers (ADMM). Experiments show that the proposed method has better performances in terms of numerical results and visual effects.\",\"PeriodicalId\":440430,\"journal\":{\"name\":\"International Conference on Electronic Technology and Information Science\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Technology and Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2682386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Technology and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将同一场景中的低空间分辨率高光谱图像(LR-HSI)与高空间分辨率多光谱图像(HR-MSI)融合是获得高空间分辨率高光谱图像的常用方法。针对标准核范数正则化对各奇异值处理均等的缺点,提出了一种基于稀疏矩阵分解的加权核范数模型(WNNS)用于高光谱图像融合。具体来说,我们通过增加系数的v1范数来提高融合图像的稀疏性。此外,为了保留重要的数据成分,我们结合了加权核范数正则化,其中对奇异值赋予不同的权重。为了有效地求解所提出的模型,我们采用了交替方向乘法器(ADMM)。实验表明,该方法在数值结果和视觉效果上都有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral image fusion via weighted nuclear norm regularized sparse matrix factorization
The fusion of a low spatial resolution hyperspectral image (LR-HSI) and a high spatial resolution multispectral image (HR-MSI) in the same scene is a common method to get a high spatial resolution hyperspectral image (HR-HSI). For the drawback that the standard nuclear norm regularization treats each singular value equally, this paper proposes a weighted nuclear norm model based on sparse matrix factorization (called WNNS) for hyperspectral image fusion. Specifically, we promote the sparsity of fused images by adding the ℓ1 norm of coefficients. Furthermore, to preserve important data components, we combine with the weighted nuclear norm regularization, where different weights are given to singular values. To efficiently solve the proposed model, we apply an alternating direction method of multipliers (ADMM). Experiments show that the proposed method has better performances in terms of numerical results and visual effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network traffic classification based on multi-head attention and deep metric learning A study of regional precipitation data fusion model based on BP-LSTM in Qinghai province Design and application of an intelligent monitoring and early warning system for bioremediation of coking contaminated sites Research on improved adaptive spectrum access mechanism for millimetre wave Unloading optimization of networked vehicles based on improved genetic and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1