SkinNet-8:一个在不平衡数据集上对皮肤癌进行分类的高效CNN架构

Nur Mohammad Fahad, S. Sakib, Mohaimenul Azam Khan Raiaan, Md. Saddam Hossain Mukta
{"title":"SkinNet-8:一个在不平衡数据集上对皮肤癌进行分类的高效CNN架构","authors":"Nur Mohammad Fahad, S. Sakib, Mohaimenul Azam Khan Raiaan, Md. Saddam Hossain Mukta","doi":"10.1109/ECCE57851.2023.10101527","DOIUrl":null,"url":null,"abstract":"Skin cancer is a fatal disease that has become the leading cause of death worldwide in recent years, although it is curable if diagnosed early. Early skin cancer detection significantly improves patients' chances of survival and reduces mortality. In this research, we conduct experiments on a high imbalance dermoscopic ISIC 2020 dataset. The primary objective of this study is to develop a shallow CNN architecture to complete the classification task effectively, requiring fewer computational resources without compromising accuracy. We have used pre-processing techniques to remove image noise and truncation and augmentation techniques to balance the dataset before fitting it into the model. Multiple performance measurement metrics were utilized to establish the overall performance. Our proposed model yields a remarkable test accuracy of 98.81%. We compare our models' performance with different transfer learning (TL) models to assess the faster convergence rate. The proposed model demonstrated its robustness by outperforming the other TL models in terms of accuracy within a short processing time. It is reasonable to assume that our proposed system will reliably aid dermatologists in diagnosing skin cancer patients early and increasing survival rates.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SkinNet-8: An Efficient CNN Architecture for Classifying Skin Cancer on an Imbalanced Dataset\",\"authors\":\"Nur Mohammad Fahad, S. Sakib, Mohaimenul Azam Khan Raiaan, Md. Saddam Hossain Mukta\",\"doi\":\"10.1109/ECCE57851.2023.10101527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin cancer is a fatal disease that has become the leading cause of death worldwide in recent years, although it is curable if diagnosed early. Early skin cancer detection significantly improves patients' chances of survival and reduces mortality. In this research, we conduct experiments on a high imbalance dermoscopic ISIC 2020 dataset. The primary objective of this study is to develop a shallow CNN architecture to complete the classification task effectively, requiring fewer computational resources without compromising accuracy. We have used pre-processing techniques to remove image noise and truncation and augmentation techniques to balance the dataset before fitting it into the model. Multiple performance measurement metrics were utilized to establish the overall performance. Our proposed model yields a remarkable test accuracy of 98.81%. We compare our models' performance with different transfer learning (TL) models to assess the faster convergence rate. The proposed model demonstrated its robustness by outperforming the other TL models in terms of accuracy within a short processing time. It is reasonable to assume that our proposed system will reliably aid dermatologists in diagnosing skin cancer patients early and increasing survival rates.\",\"PeriodicalId\":131537,\"journal\":{\"name\":\"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE57851.2023.10101527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

皮肤癌是一种致命的疾病,近年来已成为全球死亡的主要原因,尽管如果早期诊断是可以治愈的。早期发现皮肤癌可显著提高患者的生存机会,降低死亡率。在本研究中,我们在高不平衡的ISIC 2020皮肤镜数据集上进行了实验。本研究的主要目标是开发一种浅层CNN架构来有效地完成分类任务,在不影响准确率的情况下需要更少的计算资源。我们使用预处理技术去除图像噪声,并在拟合模型之前使用截断和增强技术来平衡数据集。使用多个性能度量指标来建立总体性能。该模型的测试精度达到了98.81%。我们将我们的模型与不同迁移学习(TL)模型的性能进行比较,以评估更快的收敛速度。在较短的处理时间内,该模型在精度方面优于其他TL模型,证明了其鲁棒性。我们有理由假设我们提出的系统将可靠地帮助皮肤科医生早期诊断皮肤癌患者并提高生存率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SkinNet-8: An Efficient CNN Architecture for Classifying Skin Cancer on an Imbalanced Dataset
Skin cancer is a fatal disease that has become the leading cause of death worldwide in recent years, although it is curable if diagnosed early. Early skin cancer detection significantly improves patients' chances of survival and reduces mortality. In this research, we conduct experiments on a high imbalance dermoscopic ISIC 2020 dataset. The primary objective of this study is to develop a shallow CNN architecture to complete the classification task effectively, requiring fewer computational resources without compromising accuracy. We have used pre-processing techniques to remove image noise and truncation and augmentation techniques to balance the dataset before fitting it into the model. Multiple performance measurement metrics were utilized to establish the overall performance. Our proposed model yields a remarkable test accuracy of 98.81%. We compare our models' performance with different transfer learning (TL) models to assess the faster convergence rate. The proposed model demonstrated its robustness by outperforming the other TL models in terms of accuracy within a short processing time. It is reasonable to assume that our proposed system will reliably aid dermatologists in diagnosing skin cancer patients early and increasing survival rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclone Prediction Visualization Tools Using Machine Learning Models and Optical Flow Exploratory Perspective of PV Net-Energy-Metering for Residential Prosumers: A Case Study in Dhaka, Bangladesh Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models Deep CNN-GRU Based Human Activity Recognition with Automatic Feature Extraction Using Smartphone and Wearable Sensors Bengali-English Neural Machine Translation Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1