生物化学反应的神经网络建模

B. Solaiman, D. Picart
{"title":"生物化学反应的神经网络建模","authors":"B. Solaiman, D. Picart","doi":"10.1109/ICNN.1994.374773","DOIUrl":null,"url":null,"abstract":"In this study, the use of neural networks (NN) in modelling biochemical reactions is shown. The metabolic chain describing the synthesis of puric bases is simulated. Results obtained are identical to those already known. The use of neural networks permits the development of more accurate models of enzymatic reactions. Thus, simulation tests concerning the use of new drugs can be performed rapidly and with good accuracy.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural networks modelling of biochemical reactions\",\"authors\":\"B. Solaiman, D. Picart\",\"doi\":\"10.1109/ICNN.1994.374773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the use of neural networks (NN) in modelling biochemical reactions is shown. The metabolic chain describing the synthesis of puric bases is simulated. Results obtained are identical to those already known. The use of neural networks permits the development of more accurate models of enzymatic reactions. Thus, simulation tests concerning the use of new drugs can be performed rapidly and with good accuracy.<<ETX>>\",\"PeriodicalId\":209128,\"journal\":{\"name\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNN.1994.374773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项研究中,使用神经网络(NN)模拟生化反应。模拟了描述纯碱合成的代谢链。所得结果与已知结果一致。神经网络的使用允许开发更精确的酶促反应模型。因此,有关新药使用的模拟试验可以快速而准确地进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural networks modelling of biochemical reactions
In this study, the use of neural networks (NN) in modelling biochemical reactions is shown. The metabolic chain describing the synthesis of puric bases is simulated. Results obtained are identical to those already known. The use of neural networks permits the development of more accurate models of enzymatic reactions. Thus, simulation tests concerning the use of new drugs can be performed rapidly and with good accuracy.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1