P. Karuppanan, K. Mahapatra, K. Jeyaraman, J. Viji
{"title":"基于自适应hcc的有源电力线调节器的冷冻功率理论","authors":"P. Karuppanan, K. Mahapatra, K. Jeyaraman, J. Viji","doi":"10.1109/ICPES.2011.6156673","DOIUrl":null,"url":null,"abstract":"This paper presents a Fryze power theory based three-phase, three-wire Active Power Line Conditioner (APLC) for power quality enhancement. The shunt APLC system is used for harmonics and reactive power compensation due to non-linear loads. The compensation control strategy is proposed on active and non-active power in the time domain based generalized Fryze currents minimization theory. PWM-voltage source inverter based active power filter gate control switching signals are brought out from adaptive-Hysteresis Current Controller (HCC). This Fryze power theory method maintains the capacitance voltage of the inverter constant without any additional controller circuit. The shunt APLC system is investigated using extensive simulation studies and the performance parameters are obtained under different steady state and transient conditions. A comparative assessment of fixed-HCC and adaptive-HCC are carried out.","PeriodicalId":158903,"journal":{"name":"2011 International Conference on Power and Energy Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fryze power theory with adaptive-HCC based active power line conditioners\",\"authors\":\"P. Karuppanan, K. Mahapatra, K. Jeyaraman, J. Viji\",\"doi\":\"10.1109/ICPES.2011.6156673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Fryze power theory based three-phase, three-wire Active Power Line Conditioner (APLC) for power quality enhancement. The shunt APLC system is used for harmonics and reactive power compensation due to non-linear loads. The compensation control strategy is proposed on active and non-active power in the time domain based generalized Fryze currents minimization theory. PWM-voltage source inverter based active power filter gate control switching signals are brought out from adaptive-Hysteresis Current Controller (HCC). This Fryze power theory method maintains the capacitance voltage of the inverter constant without any additional controller circuit. The shunt APLC system is investigated using extensive simulation studies and the performance parameters are obtained under different steady state and transient conditions. A comparative assessment of fixed-HCC and adaptive-HCC are carried out.\",\"PeriodicalId\":158903,\"journal\":{\"name\":\"2011 International Conference on Power and Energy Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPES.2011.6156673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPES.2011.6156673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fryze power theory with adaptive-HCC based active power line conditioners
This paper presents a Fryze power theory based three-phase, three-wire Active Power Line Conditioner (APLC) for power quality enhancement. The shunt APLC system is used for harmonics and reactive power compensation due to non-linear loads. The compensation control strategy is proposed on active and non-active power in the time domain based generalized Fryze currents minimization theory. PWM-voltage source inverter based active power filter gate control switching signals are brought out from adaptive-Hysteresis Current Controller (HCC). This Fryze power theory method maintains the capacitance voltage of the inverter constant without any additional controller circuit. The shunt APLC system is investigated using extensive simulation studies and the performance parameters are obtained under different steady state and transient conditions. A comparative assessment of fixed-HCC and adaptive-HCC are carried out.