基于自适应hcc的有源电力线调节器的冷冻功率理论

P. Karuppanan, K. Mahapatra, K. Jeyaraman, J. Viji
{"title":"基于自适应hcc的有源电力线调节器的冷冻功率理论","authors":"P. Karuppanan, K. Mahapatra, K. Jeyaraman, J. Viji","doi":"10.1109/ICPES.2011.6156673","DOIUrl":null,"url":null,"abstract":"This paper presents a Fryze power theory based three-phase, three-wire Active Power Line Conditioner (APLC) for power quality enhancement. The shunt APLC system is used for harmonics and reactive power compensation due to non-linear loads. The compensation control strategy is proposed on active and non-active power in the time domain based generalized Fryze currents minimization theory. PWM-voltage source inverter based active power filter gate control switching signals are brought out from adaptive-Hysteresis Current Controller (HCC). This Fryze power theory method maintains the capacitance voltage of the inverter constant without any additional controller circuit. The shunt APLC system is investigated using extensive simulation studies and the performance parameters are obtained under different steady state and transient conditions. A comparative assessment of fixed-HCC and adaptive-HCC are carried out.","PeriodicalId":158903,"journal":{"name":"2011 International Conference on Power and Energy Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fryze power theory with adaptive-HCC based active power line conditioners\",\"authors\":\"P. Karuppanan, K. Mahapatra, K. Jeyaraman, J. Viji\",\"doi\":\"10.1109/ICPES.2011.6156673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Fryze power theory based three-phase, three-wire Active Power Line Conditioner (APLC) for power quality enhancement. The shunt APLC system is used for harmonics and reactive power compensation due to non-linear loads. The compensation control strategy is proposed on active and non-active power in the time domain based generalized Fryze currents minimization theory. PWM-voltage source inverter based active power filter gate control switching signals are brought out from adaptive-Hysteresis Current Controller (HCC). This Fryze power theory method maintains the capacitance voltage of the inverter constant without any additional controller circuit. The shunt APLC system is investigated using extensive simulation studies and the performance parameters are obtained under different steady state and transient conditions. A comparative assessment of fixed-HCC and adaptive-HCC are carried out.\",\"PeriodicalId\":158903,\"journal\":{\"name\":\"2011 International Conference on Power and Energy Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Power and Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPES.2011.6156673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Power and Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPES.2011.6156673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于Fryze功率理论的三相三线有源电力线调节器(APLC),用于提高电能质量。并联APLC系统用于非线性负载的谐波和无功补偿。提出了基于广义融流最小化理论的有功功率和无功功率时域补偿控制策略。基于pwm电压源逆变器的有源滤波门控开关信号由自适应磁滞电流控制器(HCC)输出。这种Fryze功率理论方法使逆变器的电容电压保持恒定,而不需要任何额外的控制电路。对并联APLC系统进行了广泛的仿真研究,获得了不同稳态和暂态条件下的性能参数。对固定型肝癌和适应性型肝癌进行了比较评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fryze power theory with adaptive-HCC based active power line conditioners
This paper presents a Fryze power theory based three-phase, three-wire Active Power Line Conditioner (APLC) for power quality enhancement. The shunt APLC system is used for harmonics and reactive power compensation due to non-linear loads. The compensation control strategy is proposed on active and non-active power in the time domain based generalized Fryze currents minimization theory. PWM-voltage source inverter based active power filter gate control switching signals are brought out from adaptive-Hysteresis Current Controller (HCC). This Fryze power theory method maintains the capacitance voltage of the inverter constant without any additional controller circuit. The shunt APLC system is investigated using extensive simulation studies and the performance parameters are obtained under different steady state and transient conditions. A comparative assessment of fixed-HCC and adaptive-HCC are carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the optimal tuning of FACTS based stabilizers for dynamic stability enhancement in multimachine power systems A new proposal for voltage regulation multi feeders/Multibus systems using MC-DVR Deployment of System Protection Schemes for enhancing reliability of power system: Operational experience of wide area SPS in Northern Regional Power System in India Power quality improvement in DTC based induction motor drive using Minnesota rectifier Neural learning algorithm based power quality enhancement for three phase three wire distribution system utilizing shunt active power filter strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1