量子扩展器:动机和结构

Avraham Ben-Aroya, O. Schwartz, A. Ta-Shma
{"title":"量子扩展器:动机和结构","authors":"Avraham Ben-Aroya, O. Schwartz, A. Ta-Shma","doi":"10.1109/CCC.2008.23","DOIUrl":null,"url":null,"abstract":"We define quantum expanders in a natural way. We give two constructions of quantum expanders, both based on classical expander constructions. The first construction is algebraic, and is based on the construction of Cayley Ramanujan graphs over the group PGL(2, q) given by Lubotzky et al. (1988). The second construction is combinatorial, and is based on a quantum variant of the Zig-Zag product introduced by Reingold et al. (2000). Both constructions are of constant degree, and the second one is explicit. Using quantum expanders, we characterize the complexity of comparing and estimating quantum entropies. Specifically, we consider the following task: given two mixed states, each given by a quantum circuit generating it, decide which mixed state has more entropy. We show that this problem is QSZK-complete (where QSZK is the class of languages having a zero-knowledge quantum interactive protocol). This problem is very well motivated from a physical point of view. Our proof resembles the classical proof that the entropy difference problem is SZK-complete, but crucially depends on the use of quantum expanders.","PeriodicalId":338061,"journal":{"name":"2008 23rd Annual IEEE Conference on Computational Complexity","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Quantum Expanders: Motivation and Constructions\",\"authors\":\"Avraham Ben-Aroya, O. Schwartz, A. Ta-Shma\",\"doi\":\"10.1109/CCC.2008.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define quantum expanders in a natural way. We give two constructions of quantum expanders, both based on classical expander constructions. The first construction is algebraic, and is based on the construction of Cayley Ramanujan graphs over the group PGL(2, q) given by Lubotzky et al. (1988). The second construction is combinatorial, and is based on a quantum variant of the Zig-Zag product introduced by Reingold et al. (2000). Both constructions are of constant degree, and the second one is explicit. Using quantum expanders, we characterize the complexity of comparing and estimating quantum entropies. Specifically, we consider the following task: given two mixed states, each given by a quantum circuit generating it, decide which mixed state has more entropy. We show that this problem is QSZK-complete (where QSZK is the class of languages having a zero-knowledge quantum interactive protocol). This problem is very well motivated from a physical point of view. Our proof resembles the classical proof that the entropy difference problem is SZK-complete, but crucially depends on the use of quantum expanders.\",\"PeriodicalId\":338061,\"journal\":{\"name\":\"2008 23rd Annual IEEE Conference on Computational Complexity\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 23rd Annual IEEE Conference on Computational Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2008.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2008.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们用自然的方式定义量子膨胀器。我们给出了两种基于经典扩展器结构的量子扩展器结构。第一种构造是代数的,基于Lubotzky et al.(1988)给出的群PGL(2, q)上的Cayley Ramanujan图的构造。第二种结构是组合的,基于Reingold等人(2000)引入的z - zag积的量子变体。这两个结构都是定度的,第二个结构是明确的。利用量子扩展器,我们描述了比较和估计量子熵的复杂性。具体来说,我们考虑以下任务:给定两种混合状态,每一种状态都由产生它的量子电路给出,决定哪种混合状态具有更多的熵。我们证明了这个问题是QSZK完备的(其中QSZK是具有零知识量子交互协议的语言类)。从物理角度来看,这个问题的动机很好。我们的证明类似于熵差问题是szk完全的经典证明,但关键取决于量子膨胀机的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Expanders: Motivation and Constructions
We define quantum expanders in a natural way. We give two constructions of quantum expanders, both based on classical expander constructions. The first construction is algebraic, and is based on the construction of Cayley Ramanujan graphs over the group PGL(2, q) given by Lubotzky et al. (1988). The second construction is combinatorial, and is based on a quantum variant of the Zig-Zag product introduced by Reingold et al. (2000). Both constructions are of constant degree, and the second one is explicit. Using quantum expanders, we characterize the complexity of comparing and estimating quantum entropies. Specifically, we consider the following task: given two mixed states, each given by a quantum circuit generating it, decide which mixed state has more entropy. We show that this problem is QSZK-complete (where QSZK is the class of languages having a zero-knowledge quantum interactive protocol). This problem is very well motivated from a physical point of view. Our proof resembles the classical proof that the entropy difference problem is SZK-complete, but crucially depends on the use of quantum expanders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Rational Points on Hypersurfaces over Finite Fields Noisy Interpolating Sets for Low Degree Polynomials NP-Hard Sets Are Exponentially Dense Unless coNP C NP/poly Amplifying Lower Bounds by Means of Self-Reducibility On the Relative Efficiency of Resolution-Like Proofs and Ordered Binary Decision Diagram Proofs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1