{"title":"一种数据驱动的基于规则的分类神经网络模型","authors":"K. Smith","doi":"10.1109/ICONIP.1999.844649","DOIUrl":null,"url":null,"abstract":"A novel approach for generating rules from neural networks is proposed. Rather than extracting rules from a trained general neural network, we use a neural network structure which permits rules to be more readily interpreted. This network incorporates logic neurons, with a combination of both fixed and adaptive weights. The backpropagation learning rules is adapted to reflect the new architecture. The proposed model also provides an opportunity for encoding expert rules and combining these rules with data driven decisions.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A data-driven rule-based neural network model for classification\",\"authors\":\"K. Smith\",\"doi\":\"10.1109/ICONIP.1999.844649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach for generating rules from neural networks is proposed. Rather than extracting rules from a trained general neural network, we use a neural network structure which permits rules to be more readily interpreted. This network incorporates logic neurons, with a combination of both fixed and adaptive weights. The backpropagation learning rules is adapted to reflect the new architecture. The proposed model also provides an opportunity for encoding expert rules and combining these rules with data driven decisions.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.844649\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种从神经网络生成规则的新方法。我们不是从训练有素的一般神经网络中提取规则,而是使用允许更容易解释规则的神经网络结构。该网络结合了固定和自适应权重的逻辑神经元。采用反向传播学习规则来反映新的体系结构。提出的模型还提供了对专家规则进行编码并将这些规则与数据驱动的决策相结合的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A data-driven rule-based neural network model for classification
A novel approach for generating rules from neural networks is proposed. Rather than extracting rules from a trained general neural network, we use a neural network structure which permits rules to be more readily interpreted. This network incorporates logic neurons, with a combination of both fixed and adaptive weights. The backpropagation learning rules is adapted to reflect the new architecture. The proposed model also provides an opportunity for encoding expert rules and combining these rules with data driven decisions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1