基于实时csi的人机交互无线手势识别

A. Polo, M. Salucci, S. Verzura, Zhenkun Zhou, A. Massa
{"title":"基于实时csi的人机交互无线手势识别","authors":"A. Polo, M. Salucci, S. Verzura, Zhenkun Zhou, A. Massa","doi":"10.1109/MOCAST52088.2021.9493383","DOIUrl":null,"url":null,"abstract":"The study and the design of novel methodologies and techniques for user's activity and gesture recognition is of great interest and a hot topic in human-computer interactions. Hand gesture recognition techniques based on computer-vision have yielded impressive results, but they involve users’ privacy concerns, therefore other sensing approaches are of interest. In this work, a novel machine learning methodology based on passive electromagnetic sensing that exploits commodity Wi-Fi signals is proposed. Such an approach has been preliminary validated in a real house environment with a classification accuracy of 98%.","PeriodicalId":146990,"journal":{"name":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real-Time CSI-Based Wireless Gesture Recognition for Human-Machine Interaction\",\"authors\":\"A. Polo, M. Salucci, S. Verzura, Zhenkun Zhou, A. Massa\",\"doi\":\"10.1109/MOCAST52088.2021.9493383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study and the design of novel methodologies and techniques for user's activity and gesture recognition is of great interest and a hot topic in human-computer interactions. Hand gesture recognition techniques based on computer-vision have yielded impressive results, but they involve users’ privacy concerns, therefore other sensing approaches are of interest. In this work, a novel machine learning methodology based on passive electromagnetic sensing that exploits commodity Wi-Fi signals is proposed. Such an approach has been preliminary validated in a real house environment with a classification accuracy of 98%.\",\"PeriodicalId\":146990,\"journal\":{\"name\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MOCAST52088.2021.9493383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 10th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST52088.2021.9493383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究和设计用于用户活动和手势识别的新方法和技术是人机交互领域的一个热门话题。基于计算机视觉的手势识别技术已经产生了令人印象深刻的结果,但它们涉及到用户的隐私问题,因此其他传感方法值得关注。在这项工作中,提出了一种基于被动电磁传感的新型机器学习方法,该方法利用商品Wi-Fi信号。这种方法已经在真实的房屋环境中进行了初步验证,分类准确率达到98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time CSI-Based Wireless Gesture Recognition for Human-Machine Interaction
The study and the design of novel methodologies and techniques for user's activity and gesture recognition is of great interest and a hot topic in human-computer interactions. Hand gesture recognition techniques based on computer-vision have yielded impressive results, but they involve users’ privacy concerns, therefore other sensing approaches are of interest. In this work, a novel machine learning methodology based on passive electromagnetic sensing that exploits commodity Wi-Fi signals is proposed. Such an approach has been preliminary validated in a real house environment with a classification accuracy of 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fish Morphological Feature Recognition Based on Deep Learning Techniques Design Steps towards a MCU-based Instrumentation System for Memristor-based Crossbar Arrays Advanced Teaching in Electromagnetics at the ELEDIA Research Center ATLAS toward the High Luminosity era: challenges on electronic systems Unsupervised Machine Learning in 6G Networks -State-of-the-art and Future Trends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1