机器人下肢假体与外骨骼控制环境识别系统的初步设计

Brock Laschowski, William J. McNally, A. Wong, J. McPhee
{"title":"机器人下肢假体与外骨骼控制环境识别系统的初步设计","authors":"Brock Laschowski, William J. McNally, A. Wong, J. McPhee","doi":"10.1109/ICORR.2019.8779540","DOIUrl":null,"url":null,"abstract":"Drawing inspiration from autonomous vehicles, using future environment information could improve the control of wearable biomechatronic devices for assisting human locomotion. To the authors knowledge, this research represents the first documented investigation using machine vision and deep convolutional neural networks for environment recognition to support the predictive control of robotic lower-limb prostheses and exoskeletons. One participant was instrumented with a battery-powered, chest-mounted RGB camera system. Approximately 10 hours of video footage were experimentally collected while ambulating throughout unknown outdoor and indoor environments. The sampled images were preprocessed and individually labelled. A deep convolutional neural network was developed and trained to automatically recognize three walking environments: level-ground, incline staircases, and decline staircases. The environment recognition system achieved 94.85% overall image classification accuracy. Extending these preliminary findings, future research should incorporate other environment classes (e.g., incline ramps) and integrate the environment recognition system with electromechanical sensors and/or surface electromyography for automated locomotion mode recognition. The challenges associated with implementing deep learning on wearable biomechatronic devices are discussed.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons\",\"authors\":\"Brock Laschowski, William J. McNally, A. Wong, J. McPhee\",\"doi\":\"10.1109/ICORR.2019.8779540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drawing inspiration from autonomous vehicles, using future environment information could improve the control of wearable biomechatronic devices for assisting human locomotion. To the authors knowledge, this research represents the first documented investigation using machine vision and deep convolutional neural networks for environment recognition to support the predictive control of robotic lower-limb prostheses and exoskeletons. One participant was instrumented with a battery-powered, chest-mounted RGB camera system. Approximately 10 hours of video footage were experimentally collected while ambulating throughout unknown outdoor and indoor environments. The sampled images were preprocessed and individually labelled. A deep convolutional neural network was developed and trained to automatically recognize three walking environments: level-ground, incline staircases, and decline staircases. The environment recognition system achieved 94.85% overall image classification accuracy. Extending these preliminary findings, future research should incorporate other environment classes (e.g., incline ramps) and integrate the environment recognition system with electromechanical sensors and/or surface electromyography for automated locomotion mode recognition. The challenges associated with implementing deep learning on wearable biomechatronic devices are discussed.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

从自动驾驶汽车中获得灵感,利用未来的环境信息可以改善可穿戴生物机电设备的控制,以帮助人类运动。据作者所知,这项研究代表了首次使用机器视觉和深度卷积神经网络进行环境识别的文献调查,以支持机器人下肢假体和外骨骼的预测控制。其中一名参与者配备了一个电池供电的、安装在胸前的RGB相机系统。在未知的室外和室内环境中走动时,实验收集了大约10小时的视频片段。对采样图像进行预处理并单独标记。开发并训练了一个深度卷积神经网络来自动识别三种步行环境:平地、倾斜楼梯和下降楼梯。环境识别系统整体图像分类准确率达到94.85%。扩展这些初步发现,未来的研究应该纳入其他环境类别(例如,倾斜斜坡),并将环境识别系统与机电传感器和/或表面肌电图集成在一起,以实现自动运动模式识别。讨论了在可穿戴生物机电设备上实施深度学习所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary Design of an Environment Recognition System for Controlling Robotic Lower-Limb Prostheses and Exoskeletons
Drawing inspiration from autonomous vehicles, using future environment information could improve the control of wearable biomechatronic devices for assisting human locomotion. To the authors knowledge, this research represents the first documented investigation using machine vision and deep convolutional neural networks for environment recognition to support the predictive control of robotic lower-limb prostheses and exoskeletons. One participant was instrumented with a battery-powered, chest-mounted RGB camera system. Approximately 10 hours of video footage were experimentally collected while ambulating throughout unknown outdoor and indoor environments. The sampled images were preprocessed and individually labelled. A deep convolutional neural network was developed and trained to automatically recognize three walking environments: level-ground, incline staircases, and decline staircases. The environment recognition system achieved 94.85% overall image classification accuracy. Extending these preliminary findings, future research should incorporate other environment classes (e.g., incline ramps) and integrate the environment recognition system with electromechanical sensors and/or surface electromyography for automated locomotion mode recognition. The challenges associated with implementing deep learning on wearable biomechatronic devices are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton Pattern recognition and direct control home use of a multi-articulating hand prosthesis Feasibility study: Towards Estimation of Fatigue Level in Robot-Assisted Exercise for Cardiac Rehabilitation Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification Texture Discrimination using a Soft Biomimetic Finger for Prosthetic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1