贝叶斯框架下直方图导向图像去噪

Mingsong Dou, Chao Zhang, Daojing Wang
{"title":"贝叶斯框架下直方图导向图像去噪","authors":"Mingsong Dou, Chao Zhang, Daojing Wang","doi":"10.1109/ICOSP.2008.4697340","DOIUrl":null,"url":null,"abstract":"Rather than concentrating on modeling the image prior probability whose structure is defined locally, in this paper we incorporate the global information from a histogram into the Bayesian method for image de-noising. The key insight is that the histogram of an underlying image can be approximately recovered from the image with additive noise by a deconvolution operation. We test our algorithm in an image set commonly used for denoising test, and obtain improved results.","PeriodicalId":445699,"journal":{"name":"2008 9th International Conference on Signal Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histogram-steered image denoising in the Bayesian framework\",\"authors\":\"Mingsong Dou, Chao Zhang, Daojing Wang\",\"doi\":\"10.1109/ICOSP.2008.4697340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rather than concentrating on modeling the image prior probability whose structure is defined locally, in this paper we incorporate the global information from a histogram into the Bayesian method for image de-noising. The key insight is that the histogram of an underlying image can be approximately recovered from the image with additive noise by a deconvolution operation. We test our algorithm in an image set commonly used for denoising test, and obtain improved results.\",\"PeriodicalId\":445699,\"journal\":{\"name\":\"2008 9th International Conference on Signal Processing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 9th International Conference on Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2008.4697340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 9th International Conference on Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2008.4697340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将直方图的全局信息整合到贝叶斯图像去噪方法中,而不是专注于对结构是局部定义的图像先验概率进行建模。关键的见解是,底层图像的直方图可以通过反卷积操作从具有加性噪声的图像中近似恢复。在常用的去噪测试图像集上对算法进行了测试,得到了改进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Histogram-steered image denoising in the Bayesian framework
Rather than concentrating on modeling the image prior probability whose structure is defined locally, in this paper we incorporate the global information from a histogram into the Bayesian method for image de-noising. The key insight is that the histogram of an underlying image can be approximately recovered from the image with additive noise by a deconvolution operation. We test our algorithm in an image set commonly used for denoising test, and obtain improved results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel pulse shaping method for Ultra-Wideband communications Matching pursuits with undercomplete dictionary A novel decision-directed channel estimator for OFDM systems Task analysis methods for data selection in task adaptation on mandarin isolated word recognition Combining LBP and Adaboost for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1