面向服务智能计算的质量驱动层次聚类算法

Y. Zhao, Chi-Hung Chi, Chen Ding
{"title":"面向服务智能计算的质量驱动层次聚类算法","authors":"Y. Zhao, Chi-Hung Chi, Chen Ding","doi":"10.1109/SKG.2011.49","DOIUrl":null,"url":null,"abstract":"Clustering is an important technique for intelligence computation such as trust, recommendation, reputation, and requirement elicitation. With the user centric nature of service and the user's lack of prior knowledge on the distribution of the raw data, one challenge is on how to associate user quality requirements on the clustering results with the algorithmic output properties (e.g. number of clusters to be targeted). In this paper, we focus on the hierarchical clustering process and propose two quality-driven hierarchical clustering algorithms, HBH (homogeneity-based hierarchical) and HDH (homogeneity-driven hierarchical) clustering algorithms, with minimum acceptable homogeneity and relative population for each cluster output as their input criteria. Furthermore, we also give a HDH-approximation algorithm in order to address the time performance issue. Experimental study on data sets with different density distribution and dispersion levels shows that the HDH gives the best quality result and HDH-approximation can significantly improve the execution time.","PeriodicalId":184788,"journal":{"name":"2011 Seventh International Conference on Semantics, Knowledge and Grids","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality-Driven Hierarchical Clustering Algorithm for Service Intelligence Computation\",\"authors\":\"Y. Zhao, Chi-Hung Chi, Chen Ding\",\"doi\":\"10.1109/SKG.2011.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is an important technique for intelligence computation such as trust, recommendation, reputation, and requirement elicitation. With the user centric nature of service and the user's lack of prior knowledge on the distribution of the raw data, one challenge is on how to associate user quality requirements on the clustering results with the algorithmic output properties (e.g. number of clusters to be targeted). In this paper, we focus on the hierarchical clustering process and propose two quality-driven hierarchical clustering algorithms, HBH (homogeneity-based hierarchical) and HDH (homogeneity-driven hierarchical) clustering algorithms, with minimum acceptable homogeneity and relative population for each cluster output as their input criteria. Furthermore, we also give a HDH-approximation algorithm in order to address the time performance issue. Experimental study on data sets with different density distribution and dispersion levels shows that the HDH gives the best quality result and HDH-approximation can significantly improve the execution time.\",\"PeriodicalId\":184788,\"journal\":{\"name\":\"2011 Seventh International Conference on Semantics, Knowledge and Grids\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Seventh International Conference on Semantics, Knowledge and Grids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2011.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Seventh International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2011.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类是一种重要的智能计算技术,如信任、推荐、声誉和需求提取。由于服务以用户为中心,用户缺乏对原始数据分布的先验知识,因此如何将用户对聚类结果的质量要求与算法输出属性(例如目标聚类的数量)联系起来是一个挑战。本文重点研究了层次聚类过程,提出了两种质量驱动的层次聚类算法,即HBH (homohomogeneous -based hierarchical)和HDH (homohomogeneous -driven hierarchical)聚类算法,以最小可接受的均匀性和每个聚类输出的相对人口作为输入标准。此外,为了解决时间性能问题,我们还给出了一种hdh近似算法。在不同密度分布和离散程度的数据集上进行的实验研究表明,HDH算法能给出最好的质量结果,并且HDH近似能显著提高执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality-Driven Hierarchical Clustering Algorithm for Service Intelligence Computation
Clustering is an important technique for intelligence computation such as trust, recommendation, reputation, and requirement elicitation. With the user centric nature of service and the user's lack of prior knowledge on the distribution of the raw data, one challenge is on how to associate user quality requirements on the clustering results with the algorithmic output properties (e.g. number of clusters to be targeted). In this paper, we focus on the hierarchical clustering process and propose two quality-driven hierarchical clustering algorithms, HBH (homogeneity-based hierarchical) and HDH (homogeneity-driven hierarchical) clustering algorithms, with minimum acceptable homogeneity and relative population for each cluster output as their input criteria. Furthermore, we also give a HDH-approximation algorithm in order to address the time performance issue. Experimental study on data sets with different density distribution and dispersion levels shows that the HDH gives the best quality result and HDH-approximation can significantly improve the execution time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Textual Semantic Lens Domain Ontology Usage Analysis Framework Cyclic Workflow Execution Mechanism on Top of MapReduce Framework Towards an IDM Approach of Transforming Web Services into ACME Providing Quality of Service ATL Transformation for the Generation of SCA Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1