群体节点关注的群落进化预测

Matt Revelle, C. Domeniconi, Ben U. Gelman
{"title":"群体节点关注的群落进化预测","authors":"Matt Revelle, C. Domeniconi, Ben U. Gelman","doi":"10.1145/3487351.3488348","DOIUrl":null,"url":null,"abstract":"Communities in social networks evolve over time as people enter and leave the network and their activity behaviors shift. The task of predicting structural changes in communities over time is known as community evolution prediction. Existing work in this area has focused on the development of frameworks for defining events while using traditional classification methods to perform the actual prediction. We present a novel graph neural network for predicting community evolution events from structural and temporal information. The model (GNAN) includes a group-node attention component which enables support for variable-sized inputs and learned representation of groups based on member and neighbor node features. A comparative evaluation with standard baseline methods is performed and we demonstrate that our model outperforms the baselines. Additionally, we show the effects of network trends on model performance.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Group-node attention for community evolution prediction\",\"authors\":\"Matt Revelle, C. Domeniconi, Ben U. Gelman\",\"doi\":\"10.1145/3487351.3488348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communities in social networks evolve over time as people enter and leave the network and their activity behaviors shift. The task of predicting structural changes in communities over time is known as community evolution prediction. Existing work in this area has focused on the development of frameworks for defining events while using traditional classification methods to perform the actual prediction. We present a novel graph neural network for predicting community evolution events from structural and temporal information. The model (GNAN) includes a group-node attention component which enables support for variable-sized inputs and learned representation of groups based on member and neighbor node features. A comparative evaluation with standard baseline methods is performed and we demonstrate that our model outperforms the baselines. Additionally, we show the effects of network trends on model performance.\",\"PeriodicalId\":320904,\"journal\":{\"name\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3487351.3488348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

社交网络中的社区随着人们进入和离开网络以及他们的活动行为的变化而不断发展。预测群落结构随时间变化的任务被称为群落进化预测。该领域的现有工作主要集中在开发用于定义事件的框架,同时使用传统的分类方法来执行实际预测。本文提出了一种基于结构和时间信息预测群落进化事件的新型图神经网络。该模型(GNAN)包括一个组节点关注组件,支持可变大小的输入和基于成员和邻居节点特征的学习组表示。与标准基线方法进行比较评估,我们证明我们的模型优于基线。此外,我们还展示了网络趋势对模型性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Group-node attention for community evolution prediction
Communities in social networks evolve over time as people enter and leave the network and their activity behaviors shift. The task of predicting structural changes in communities over time is known as community evolution prediction. Existing work in this area has focused on the development of frameworks for defining events while using traditional classification methods to perform the actual prediction. We present a novel graph neural network for predicting community evolution events from structural and temporal information. The model (GNAN) includes a group-node attention component which enables support for variable-sized inputs and learned representation of groups based on member and neighbor node features. A comparative evaluation with standard baseline methods is performed and we demonstrate that our model outperforms the baselines. Additionally, we show the effects of network trends on model performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1