原始槟榔图像的颜色特征和KNN分类

S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya
{"title":"原始槟榔图像的颜色特征和KNN分类","authors":"S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya","doi":"10.1109/ICGCIOT.2018.8753075","DOIUrl":null,"url":null,"abstract":"Arecanut is one of the important cash crops of Southern India. Classification of raw arecanut is one of the major tasks in grading, which is a vital part of crop management. In this work we proposed a model which classifies the raw arecanut. We used color histogram and color moments as features with K-NN classifier. Experiment is conducted on a dataset of 800 images of four classes using two color features and four distance measures with K-NN. A classification accuracy of 98.13% is achieved for 20% training with K value of 3 and Euclidean distance measure for color histogram features.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Color Features and KNN in Classification of Raw Arecanut images\",\"authors\":\"S. Siddesha, S. Niranjan, V. N. Manjunath Aradhya\",\"doi\":\"10.1109/ICGCIOT.2018.8753075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arecanut is one of the important cash crops of Southern India. Classification of raw arecanut is one of the major tasks in grading, which is a vital part of crop management. In this work we proposed a model which classifies the raw arecanut. We used color histogram and color moments as features with K-NN classifier. Experiment is conducted on a dataset of 800 images of four classes using two color features and four distance measures with K-NN. A classification accuracy of 98.13% is achieved for 20% training with K value of 3 and Euclidean distance measure for color histogram features.\",\"PeriodicalId\":269682,\"journal\":{\"name\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"volume\":\"04 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGCIOT.2018.8753075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8753075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

槟榔是印度南部重要的经济作物之一。生槟榔的分级是分级的主要任务之一,是作物经营的重要组成部分。本文提出了一种对生槟榔进行分类的模型。我们使用颜色直方图和颜色矩作为K-NN分类器的特征。利用K-NN的两种颜色特征和四种距离度量,在800张四类图像的数据集上进行了实验。对颜色直方图特征进行K值为3和欧氏距离度量的20%训练,分类准确率达到98.13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Color Features and KNN in Classification of Raw Arecanut images
Arecanut is one of the important cash crops of Southern India. Classification of raw arecanut is one of the major tasks in grading, which is a vital part of crop management. In this work we proposed a model which classifies the raw arecanut. We used color histogram and color moments as features with K-NN classifier. Experiment is conducted on a dataset of 800 images of four classes using two color features and four distance measures with K-NN. A classification accuracy of 98.13% is achieved for 20% training with K value of 3 and Euclidean distance measure for color histogram features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Holistic Approach For Patient Health Care Monitoring System Through IoT Pomegranate Diseases and Detection using Sensors: A Review Energy Efficient Optimal Path based coded transmission for multi-sink and multi-hop WSN Iot Based Smart Shopping Mall Visual screens in Canteens providing Real Time information of Food Wastage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1