通道与空间特征融合的对称双注意生成对抗网络

Jiaming Zhang, Xinfeng Zhang, Bo Zhang, Maoshen Jia, Yuqing Liang, Yitian Zhang
{"title":"通道与空间特征融合的对称双注意生成对抗网络","authors":"Jiaming Zhang, Xinfeng Zhang, Bo Zhang, Maoshen Jia, Yuqing Liang, Yitian Zhang","doi":"10.1145/3581807.3581904","DOIUrl":null,"url":null,"abstract":"Many existing generative adversarial networks (GANs) lack effective semantic modeling, leading to unnatural local details and blurring in generated images. In this work, based on DivCo, we propose a Symmetric Dual-Attention Generative Adversarial Network (DivCo-SDAGAN) with channel and spatial feature fusion in which the Dual-Attention Module (DAM) is introduced to strengthen the feature representation ability of the network to synthesize photo-realistic images with more natural local details. The Channel Weighted Aggregation Module (CWAM) and the Spatial Attention Module (SAM) of the DAM are designed to capture the semantic information of channel dimension and spatial dimension, respectively, and they can be easily integrated into other GANs-based models. Extensive experiments show that the proposed DivCo-SDAGAN can produce more diverse images under the same input, achieving more satisfactory results than other existing methods.","PeriodicalId":292813,"journal":{"name":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Symmetric Dual-Attention Generative Adversarial Network with Channel and Spatial Features Fusion\",\"authors\":\"Jiaming Zhang, Xinfeng Zhang, Bo Zhang, Maoshen Jia, Yuqing Liang, Yitian Zhang\",\"doi\":\"10.1145/3581807.3581904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many existing generative adversarial networks (GANs) lack effective semantic modeling, leading to unnatural local details and blurring in generated images. In this work, based on DivCo, we propose a Symmetric Dual-Attention Generative Adversarial Network (DivCo-SDAGAN) with channel and spatial feature fusion in which the Dual-Attention Module (DAM) is introduced to strengthen the feature representation ability of the network to synthesize photo-realistic images with more natural local details. The Channel Weighted Aggregation Module (CWAM) and the Spatial Attention Module (SAM) of the DAM are designed to capture the semantic information of channel dimension and spatial dimension, respectively, and they can be easily integrated into other GANs-based models. Extensive experiments show that the proposed DivCo-SDAGAN can produce more diverse images under the same input, achieving more satisfactory results than other existing methods.\",\"PeriodicalId\":292813,\"journal\":{\"name\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3581807.3581904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 11th International Conference on Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581807.3581904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多现有的生成对抗网络(GANs)缺乏有效的语义建模,导致生成图像的局部细节不自然和模糊。本文在DivCo的基础上,提出了一种通道和空间特征融合的对称双注意生成对抗网络(DivCo- sdagan),其中引入了双注意模块(Dual-Attention Module, DAM)来增强网络的特征表示能力,从而合成具有更自然局部细节的逼真图像。DAM中的信道加权聚合模块(CWAM)和空间注意模块(SAM)分别用于捕获信道维度和空间维度的语义信息,并且可以很容易地集成到其他基于高斯的模型中。大量的实验表明,在相同的输入条件下,所提出的DivCo-SDAGAN可以产生更多样化的图像,取得了比其他现有方法更令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Symmetric Dual-Attention Generative Adversarial Network with Channel and Spatial Features Fusion
Many existing generative adversarial networks (GANs) lack effective semantic modeling, leading to unnatural local details and blurring in generated images. In this work, based on DivCo, we propose a Symmetric Dual-Attention Generative Adversarial Network (DivCo-SDAGAN) with channel and spatial feature fusion in which the Dual-Attention Module (DAM) is introduced to strengthen the feature representation ability of the network to synthesize photo-realistic images with more natural local details. The Channel Weighted Aggregation Module (CWAM) and the Spatial Attention Module (SAM) of the DAM are designed to capture the semantic information of channel dimension and spatial dimension, respectively, and they can be easily integrated into other GANs-based models. Extensive experiments show that the proposed DivCo-SDAGAN can produce more diverse images under the same input, achieving more satisfactory results than other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Channel Attention for Chinese Scene Text Recognition Vehicle Re-identification Based on Multi-Scale Attention Feature Fusion Comparative Study on EEG Feature Recognition based on Deep Belief Network VA-TransUNet: A U-shaped Medical Image Segmentation Network with Visual Attention Traffic Flow Forecasting Research Based on Delay Reconstruction and GRU-SVR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1