{"title":"尼日利亚单一家庭的最佳能源系统","authors":"Vincent Anayochukwu Ani","doi":"10.4018/IJEOE.2013070102","DOIUrl":null,"url":null,"abstract":"Hybrid PV/Wind power system can be used to generate electricity consumed in household. This paper presents the design of a stand-alone Hybrid PV/Wind energy system for a household in University of Nigeria, Nsukka (UNN) in Eastern Nigeria with a daily load of 5.2kwh/d. Solar and wind resources for the design of the system were obtained from the NASA Surface Meteorology and solar energy website at a location of 6° 51' N latitude and 7° 24' E longitude, with annual average solar radiation of 4.92kWh/m2/d and annual average wind speed of 2.1m/s. The study is based on modeling, simulation and optimization of energy system in UNN. The model was designed to provide an optimal system configuration based on hour-by-hour data for energy availability and demands. Energy source, energy storage and their applicability in terms of cost and performance are discussed. The Hybrid Optimization Model for Electric Renewables (HOMER) software is used to study and design the proposed stand-alone Hybrid PV/Wind power system model. The designed Hybrid PV/Wind was compared to gasoline generator in order to choose the best energy system for the household. Total Net Present Cost (NPC) and impact on the environment are used as indices for measuring the optimization level of each energy solution. Simulation results show the Hybrid PV/Wind option ($317,907; 0 tonnes of CO2) to be superior to conventional solution ($374,237; 2.049 tonnes of CO2) whereby gasoline generators are currently used to power household around Nigeria.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Optimal Energy System for Single Household in Nigeria\",\"authors\":\"Vincent Anayochukwu Ani\",\"doi\":\"10.4018/IJEOE.2013070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hybrid PV/Wind power system can be used to generate electricity consumed in household. This paper presents the design of a stand-alone Hybrid PV/Wind energy system for a household in University of Nigeria, Nsukka (UNN) in Eastern Nigeria with a daily load of 5.2kwh/d. Solar and wind resources for the design of the system were obtained from the NASA Surface Meteorology and solar energy website at a location of 6° 51' N latitude and 7° 24' E longitude, with annual average solar radiation of 4.92kWh/m2/d and annual average wind speed of 2.1m/s. The study is based on modeling, simulation and optimization of energy system in UNN. The model was designed to provide an optimal system configuration based on hour-by-hour data for energy availability and demands. Energy source, energy storage and their applicability in terms of cost and performance are discussed. The Hybrid Optimization Model for Electric Renewables (HOMER) software is used to study and design the proposed stand-alone Hybrid PV/Wind power system model. The designed Hybrid PV/Wind was compared to gasoline generator in order to choose the best energy system for the household. Total Net Present Cost (NPC) and impact on the environment are used as indices for measuring the optimization level of each energy solution. Simulation results show the Hybrid PV/Wind option ($317,907; 0 tonnes of CO2) to be superior to conventional solution ($374,237; 2.049 tonnes of CO2) whereby gasoline generators are currently used to power household around Nigeria.\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJEOE.2013070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2013070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Energy System for Single Household in Nigeria
Hybrid PV/Wind power system can be used to generate electricity consumed in household. This paper presents the design of a stand-alone Hybrid PV/Wind energy system for a household in University of Nigeria, Nsukka (UNN) in Eastern Nigeria with a daily load of 5.2kwh/d. Solar and wind resources for the design of the system were obtained from the NASA Surface Meteorology and solar energy website at a location of 6° 51' N latitude and 7° 24' E longitude, with annual average solar radiation of 4.92kWh/m2/d and annual average wind speed of 2.1m/s. The study is based on modeling, simulation and optimization of energy system in UNN. The model was designed to provide an optimal system configuration based on hour-by-hour data for energy availability and demands. Energy source, energy storage and their applicability in terms of cost and performance are discussed. The Hybrid Optimization Model for Electric Renewables (HOMER) software is used to study and design the proposed stand-alone Hybrid PV/Wind power system model. The designed Hybrid PV/Wind was compared to gasoline generator in order to choose the best energy system for the household. Total Net Present Cost (NPC) and impact on the environment are used as indices for measuring the optimization level of each energy solution. Simulation results show the Hybrid PV/Wind option ($317,907; 0 tonnes of CO2) to be superior to conventional solution ($374,237; 2.049 tonnes of CO2) whereby gasoline generators are currently used to power household around Nigeria.