基于混合纹理特征集的眼底图像年龄相关性黄斑变性自动诊断系统

S. Khalid, M. Akram, Tehmina Khalil
{"title":"基于混合纹理特征集的眼底图像年龄相关性黄斑变性自动诊断系统","authors":"S. Khalid, M. Akram, Tehmina Khalil","doi":"10.1109/C-CODE.2017.7918963","DOIUrl":null,"url":null,"abstract":"Macula is the most sensitive component of human retina and it is responsible for sharp colored vision. Any abnormality effecting macula results in blurriness and other eye impairments. Two main abnormalities related to macula are macular edema and ARMD (Age Related Macular Degeneration). This paper focus on automated detection of ARMD using digital fundus images. The proposed technique extracts macular region automatically from input image and then analyzes texture of macular region to identify abnormal macula. A novel hybrid feature set consisting of different textural and color features have been proposed. The experiments are conducted using publicly available STARE and locally available AFIO databases. Our proposed system achieves 97.5%, 83% and 95.52% sensitivity, specificity, and accuracy respectively.","PeriodicalId":344222,"journal":{"name":"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hybrid textural feature set based automated diagnosis system for Age Related Macular Degeneration using fundus images\",\"authors\":\"S. Khalid, M. Akram, Tehmina Khalil\",\"doi\":\"10.1109/C-CODE.2017.7918963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Macula is the most sensitive component of human retina and it is responsible for sharp colored vision. Any abnormality effecting macula results in blurriness and other eye impairments. Two main abnormalities related to macula are macular edema and ARMD (Age Related Macular Degeneration). This paper focus on automated detection of ARMD using digital fundus images. The proposed technique extracts macular region automatically from input image and then analyzes texture of macular region to identify abnormal macula. A novel hybrid feature set consisting of different textural and color features have been proposed. The experiments are conducted using publicly available STARE and locally available AFIO databases. Our proposed system achieves 97.5%, 83% and 95.52% sensitivity, specificity, and accuracy respectively.\",\"PeriodicalId\":344222,\"journal\":{\"name\":\"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C-CODE.2017.7918963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C-CODE.2017.7918963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

黄斑是人类视网膜中最敏感的部分,它负责清晰的彩色视觉。任何影响黄斑的异常都会导致模糊和其他视力损害。与黄斑有关的两种主要异常是黄斑水肿和ARMD(年龄相关性黄斑变性)。本文主要研究了基于数字眼底图像的ARMD自动检测。该技术从输入图像中自动提取黄斑区域,然后对黄斑区域的纹理进行分析,识别异常黄斑。提出了一种由不同纹理特征和颜色特征组成的混合特征集。实验使用公开可用的STARE和本地可用的AFIO数据库进行。该系统的灵敏度、特异度和准确度分别达到97.5%、83%和95.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid textural feature set based automated diagnosis system for Age Related Macular Degeneration using fundus images
Macula is the most sensitive component of human retina and it is responsible for sharp colored vision. Any abnormality effecting macula results in blurriness and other eye impairments. Two main abnormalities related to macula are macular edema and ARMD (Age Related Macular Degeneration). This paper focus on automated detection of ARMD using digital fundus images. The proposed technique extracts macular region automatically from input image and then analyzes texture of macular region to identify abnormal macula. A novel hybrid feature set consisting of different textural and color features have been proposed. The experiments are conducted using publicly available STARE and locally available AFIO databases. Our proposed system achieves 97.5%, 83% and 95.52% sensitivity, specificity, and accuracy respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A control channel based MAC protocol for time critical and emergency communications in Industrial Wireless Sensor Networks Security framework of Ultralightweight Mutual Authentication Protocols for low cost RFID tags 5G cellular network integration with SDN: Challenges, issues and beyond Performance comparisons of fixed and adaptive beamforming techniques for 4G smart antennas Usage of gamification in enterprise: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1