Chen Jin, Qiang Fu, Huahua Wang, Ankit Agrawal, W. Hendrix, W. Liao, Md. Mostofa Ali Patwary, A. Banerjee, A. Choudhary
{"title":"用松弛线性规划解决组合优化问题:高性能计算的视角","authors":"Chen Jin, Qiang Fu, Huahua Wang, Ankit Agrawal, W. Hendrix, W. Liao, Md. Mostofa Ali Patwary, A. Banerjee, A. Choudhary","doi":"10.1145/2501221.2501227","DOIUrl":null,"url":null,"abstract":"Several important combinatorial optimization problems can be formulated as maximum a posteriori (MAP) inference in discrete graphical models. We adopt the recently proposed parallel MAP inference algorithm Bethe-ADMM and implement it using message passing interface (MPI) to fully utilize the computing power provided by the modern supercomputers with thousands of cores. The empirical results show that our parallel implementation scales almost linearly even with thousands of cores.","PeriodicalId":441216,"journal":{"name":"BigMine '13","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Solving combinatorial optimization problems using relaxed linear programming: a high performance computing perspective\",\"authors\":\"Chen Jin, Qiang Fu, Huahua Wang, Ankit Agrawal, W. Hendrix, W. Liao, Md. Mostofa Ali Patwary, A. Banerjee, A. Choudhary\",\"doi\":\"10.1145/2501221.2501227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several important combinatorial optimization problems can be formulated as maximum a posteriori (MAP) inference in discrete graphical models. We adopt the recently proposed parallel MAP inference algorithm Bethe-ADMM and implement it using message passing interface (MPI) to fully utilize the computing power provided by the modern supercomputers with thousands of cores. The empirical results show that our parallel implementation scales almost linearly even with thousands of cores.\",\"PeriodicalId\":441216,\"journal\":{\"name\":\"BigMine '13\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BigMine '13\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2501221.2501227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BigMine '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2501221.2501227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solving combinatorial optimization problems using relaxed linear programming: a high performance computing perspective
Several important combinatorial optimization problems can be formulated as maximum a posteriori (MAP) inference in discrete graphical models. We adopt the recently proposed parallel MAP inference algorithm Bethe-ADMM and implement it using message passing interface (MPI) to fully utilize the computing power provided by the modern supercomputers with thousands of cores. The empirical results show that our parallel implementation scales almost linearly even with thousands of cores.