{"title":"通过类比的联结主义增量学习","authors":"T. Watanabe, H. Fujimura, S. Yasui","doi":"10.1109/ICONIP.1999.844663","DOIUrl":null,"url":null,"abstract":"The Connectionist Analogy Processor (CAP) is a neural network. The paradigm of CAP assumes relational isomorphism for analogical inference. An internal abstraction model is formed by backpropagation training with the aid of a pruning mechanism. CAP also automatically develops abstraction and de-abstraction mappings to link the general and specific entities. CAP is applied to incremental analogical learning that involves multiple sets of analogy. It is shown that a new set of target data are selectively bound to the right one of internal abstraction models acquired from the previous analogical learning, i.e., the abstraction model acts as the attractor in the weight parameter space.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Connectionist incremental learning by analogy\",\"authors\":\"T. Watanabe, H. Fujimura, S. Yasui\",\"doi\":\"10.1109/ICONIP.1999.844663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Connectionist Analogy Processor (CAP) is a neural network. The paradigm of CAP assumes relational isomorphism for analogical inference. An internal abstraction model is formed by backpropagation training with the aid of a pruning mechanism. CAP also automatically develops abstraction and de-abstraction mappings to link the general and specific entities. CAP is applied to incremental analogical learning that involves multiple sets of analogy. It is shown that a new set of target data are selectively bound to the right one of internal abstraction models acquired from the previous analogical learning, i.e., the abstraction model acts as the attractor in the weight parameter space.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.844663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

连接主义类比处理器(CAP)是一种神经网络。CAP的范式为类比推理假定了关系同构。通过反向传播训练,借助剪枝机制形成内部抽象模型。CAP还自动开发抽象和反抽象映射,以链接一般实体和特定实体。CAP应用于涉及多组类比的增量类比学习。结果表明,新的目标数据集被选择性地绑定到从先前的类比学习中获得的内部抽象模型的正确模型上,即抽象模型在权重参数空间中充当吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Connectionist incremental learning by analogy
The Connectionist Analogy Processor (CAP) is a neural network. The paradigm of CAP assumes relational isomorphism for analogical inference. An internal abstraction model is formed by backpropagation training with the aid of a pruning mechanism. CAP also automatically develops abstraction and de-abstraction mappings to link the general and specific entities. CAP is applied to incremental analogical learning that involves multiple sets of analogy. It is shown that a new set of target data are selectively bound to the right one of internal abstraction models acquired from the previous analogical learning, i.e., the abstraction model acts as the attractor in the weight parameter space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1