基于方形螺旋框架的快速多尺度图像处理

J. Fegan, S. Coleman, D. Kerr, B. Scotney
{"title":"基于方形螺旋框架的快速多尺度图像处理","authors":"J. Fegan, S. Coleman, D. Kerr, B. Scotney","doi":"10.1145/3268866.3268882","DOIUrl":null,"url":null,"abstract":"Efficient processing of digital images is a key consideration in many machine vision tasks. Traditional image processing approaches often struggle to meet this demand, particularly at the initial low-level of processing image pixels. To overcome this, we propose a spiral based processing approach which takes inspiration from the asymmetric lattice of interlocking cells found in the human visual system. Here we demonstrate the efficiency of the proposed spiral approach for multi-scale feature extraction. This is complemented by a biologically inspired image acquisition process which is used to capture nine image frames at different spatial locations. The results demonstrate that the biologically inspired spiral approach offers a faster alternative to corresponding traditional image processing approaches.","PeriodicalId":285628,"journal":{"name":"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast, Multi-Scale Image Processing on a Square Spiral Framework\",\"authors\":\"J. Fegan, S. Coleman, D. Kerr, B. Scotney\",\"doi\":\"10.1145/3268866.3268882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient processing of digital images is a key consideration in many machine vision tasks. Traditional image processing approaches often struggle to meet this demand, particularly at the initial low-level of processing image pixels. To overcome this, we propose a spiral based processing approach which takes inspiration from the asymmetric lattice of interlocking cells found in the human visual system. Here we demonstrate the efficiency of the proposed spiral approach for multi-scale feature extraction. This is complemented by a biologically inspired image acquisition process which is used to capture nine image frames at different spatial locations. The results demonstrate that the biologically inspired spiral approach offers a faster alternative to corresponding traditional image processing approaches.\",\"PeriodicalId\":285628,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3268866.3268882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3268866.3268882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字图像的有效处理是许多机器视觉任务的关键考虑因素。传统的图像处理方法往往难以满足这种需求,特别是在处理图像像素的初始低级。为了克服这一点,我们提出了一种基于螺旋的处理方法,该方法的灵感来自于人类视觉系统中发现的互锁细胞的不对称晶格。在这里,我们证明了所提出的螺旋方法在多尺度特征提取中的有效性。这是一个生物学启发的图像采集过程的补充,用于在不同的空间位置捕获九个图像帧。结果表明,生物学启发的螺旋方法提供了一种更快的替代相应的传统图像处理方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast, Multi-Scale Image Processing on a Square Spiral Framework
Efficient processing of digital images is a key consideration in many machine vision tasks. Traditional image processing approaches often struggle to meet this demand, particularly at the initial low-level of processing image pixels. To overcome this, we propose a spiral based processing approach which takes inspiration from the asymmetric lattice of interlocking cells found in the human visual system. Here we demonstrate the efficiency of the proposed spiral approach for multi-scale feature extraction. This is complemented by a biologically inspired image acquisition process which is used to capture nine image frames at different spatial locations. The results demonstrate that the biologically inspired spiral approach offers a faster alternative to corresponding traditional image processing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Indoor Robot Navigation via Siamese Deep Convolutional Neural Network Application of Domain Adaptation Approach for Weather Data Mining Discriminative Co-Occurrence of Concept Features for Action Recognition Combinatorial Optimization Approach for Arabic Word Recognition Categorization of Patient Disease into ICD-10 with NLP and SVM for Chinese Electronic Health Record Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1