WiMAX网络中有效信噪比空间分布的半解析方法

Masood Maqbool, M. Coupechoux, P. Godlewski
{"title":"WiMAX网络中有效信噪比空间分布的半解析方法","authors":"Masood Maqbool, M. Coupechoux, P. Godlewski","doi":"10.1109/SARNOF.2009.4850356","DOIUrl":null,"url":null,"abstract":"The stationary probabilities of different modulation and coding schemes (MCS) are required for dimensioning an OFDMA based network. In this paper, we introduce a semi-analytical approach to find out these stationary probabilities for a WiMAX network in downlink (DL) with users served by the best base station (BS). Using Monte Carlo simulations, we find the spatial distributions of effective signal to interference-plus-noise ratio (SINReff) for different values of shadowing standard deviation (σSH). With the help of distribution fit, we show that generalized extreme value (GEV) distribution provides a good fit for different frequency reuse schemes. Furthermore, by applying curve fitting, we demonstrate that the parameters of GEV distributions, as a function of (σSH) values, can be expressed using polynomials. These polynomial can then be used off-line (in place of time consuming simulations) to find out GEV cumulative distribution function (CDF), and hence the stationary probabilities of MCS, for any desired value of (σSH). We further show that these polynomials can be used for other cell configurations with acceptable deviation and significant time saving.","PeriodicalId":230233,"journal":{"name":"2009 IEEE Sarnoff Symposium","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A semi-analytical method to model effective SINR spatial distribution in WiMAX networks\",\"authors\":\"Masood Maqbool, M. Coupechoux, P. Godlewski\",\"doi\":\"10.1109/SARNOF.2009.4850356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stationary probabilities of different modulation and coding schemes (MCS) are required for dimensioning an OFDMA based network. In this paper, we introduce a semi-analytical approach to find out these stationary probabilities for a WiMAX network in downlink (DL) with users served by the best base station (BS). Using Monte Carlo simulations, we find the spatial distributions of effective signal to interference-plus-noise ratio (SINReff) for different values of shadowing standard deviation (σSH). With the help of distribution fit, we show that generalized extreme value (GEV) distribution provides a good fit for different frequency reuse schemes. Furthermore, by applying curve fitting, we demonstrate that the parameters of GEV distributions, as a function of (σSH) values, can be expressed using polynomials. These polynomial can then be used off-line (in place of time consuming simulations) to find out GEV cumulative distribution function (CDF), and hence the stationary probabilities of MCS, for any desired value of (σSH). We further show that these polynomials can be used for other cell configurations with acceptable deviation and significant time saving.\",\"PeriodicalId\":230233,\"journal\":{\"name\":\"2009 IEEE Sarnoff Symposium\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Sarnoff Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SARNOF.2009.4850356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Sarnoff Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SARNOF.2009.4850356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

对基于OFDMA的网络进行维数划分需要不同调制和编码方案(MCS)的平稳概率。在本文中,我们引入了一种半解析方法来找出WiMAX网络在下行链路(DL)中由最佳基站(BS)服务的这些平稳概率。通过蒙特卡罗模拟,得到了不同阴影标准差(σSH)值下有效信噪比(SINReff)的空间分布。在分布拟合的帮助下,我们证明了广义极值(GEV)分布对不同的频率复用方案具有很好的拟合性。此外,通过曲线拟合,我们证明了GEV分布参数作为σSH值的函数可以用多项式表示。然后,这些多项式可以离线使用(代替耗时的模拟)来找出GEV累积分布函数(CDF),从而找出MCS的平稳概率,对于任何期望的(σSH)值。我们进一步表明,这些多项式可以用于具有可接受偏差和显著节省时间的其他单元配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semi-analytical method to model effective SINR spatial distribution in WiMAX networks
The stationary probabilities of different modulation and coding schemes (MCS) are required for dimensioning an OFDMA based network. In this paper, we introduce a semi-analytical approach to find out these stationary probabilities for a WiMAX network in downlink (DL) with users served by the best base station (BS). Using Monte Carlo simulations, we find the spatial distributions of effective signal to interference-plus-noise ratio (SINReff) for different values of shadowing standard deviation (σSH). With the help of distribution fit, we show that generalized extreme value (GEV) distribution provides a good fit for different frequency reuse schemes. Furthermore, by applying curve fitting, we demonstrate that the parameters of GEV distributions, as a function of (σSH) values, can be expressed using polynomials. These polynomial can then be used off-line (in place of time consuming simulations) to find out GEV cumulative distribution function (CDF), and hence the stationary probabilities of MCS, for any desired value of (σSH). We further show that these polynomials can be used for other cell configurations with acceptable deviation and significant time saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MIMO NLMS-ZF data detection approach for WCDMA based HSDPA systems LASA: Low-energy adaptive slot allocation scheduling algorithm for wireless sensor networks A wavelet-based method for classification of binary digitally modulated signals Nonlinearity estimation for Specific Emitter Identification in multipath environment A dynamic intrusion detection hierarchy for MANETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1