Ioannis Alafogiannis, F. Tugnoli, Iason Mitsios, M. Anagnostakis
{"title":"开发计算γ谱法中自吸收校正因子的计算机程序","authors":"Ioannis Alafogiannis, F. Tugnoli, Iason Mitsios, M. Anagnostakis","doi":"10.12681/hnps.3607","DOIUrl":null,"url":null,"abstract":"In γ-spectroscopy applications, one of the main effects that needs to be considered is the self absorption of the photons – especially of low energy – within the photon source, which may be significantly different between the calibration standard and the sample analyzed. This effect is highly dependent on material composition and density and sample thickness. A common way of dealing with the self-absorption issue is by using Efficiency Correction Factors (ECF), to take into consideration the different absorbing properties between the calibration standard and the sample. This work presents the on-going development of a MATLAB code for ECF calculation. The code calculates ECF for a variety of material matrices and compositions, focusing on Naturally Occurring Radioactive Materials (NORM), which may have high density and contain high Z elements. The results of the code were compared with other methods of ECF calculation, such as Monte-Carlo simulation.","PeriodicalId":262803,"journal":{"name":"HNPS Advances in Nuclear Physics","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a computer code for the calculation of self-absorption correction factors in γ-spectrometry applications\",\"authors\":\"Ioannis Alafogiannis, F. Tugnoli, Iason Mitsios, M. Anagnostakis\",\"doi\":\"10.12681/hnps.3607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In γ-spectroscopy applications, one of the main effects that needs to be considered is the self absorption of the photons – especially of low energy – within the photon source, which may be significantly different between the calibration standard and the sample analyzed. This effect is highly dependent on material composition and density and sample thickness. A common way of dealing with the self-absorption issue is by using Efficiency Correction Factors (ECF), to take into consideration the different absorbing properties between the calibration standard and the sample. This work presents the on-going development of a MATLAB code for ECF calculation. The code calculates ECF for a variety of material matrices and compositions, focusing on Naturally Occurring Radioactive Materials (NORM), which may have high density and contain high Z elements. The results of the code were compared with other methods of ECF calculation, such as Monte-Carlo simulation.\",\"PeriodicalId\":262803,\"journal\":{\"name\":\"HNPS Advances in Nuclear Physics\",\"volume\":\"08 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HNPS Advances in Nuclear Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12681/hnps.3607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HNPS Advances in Nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12681/hnps.3607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a computer code for the calculation of self-absorption correction factors in γ-spectrometry applications
In γ-spectroscopy applications, one of the main effects that needs to be considered is the self absorption of the photons – especially of low energy – within the photon source, which may be significantly different between the calibration standard and the sample analyzed. This effect is highly dependent on material composition and density and sample thickness. A common way of dealing with the self-absorption issue is by using Efficiency Correction Factors (ECF), to take into consideration the different absorbing properties between the calibration standard and the sample. This work presents the on-going development of a MATLAB code for ECF calculation. The code calculates ECF for a variety of material matrices and compositions, focusing on Naturally Occurring Radioactive Materials (NORM), which may have high density and contain high Z elements. The results of the code were compared with other methods of ECF calculation, such as Monte-Carlo simulation.