{"title":"ΦgOTDR利用几何相位","authors":"Sabahat Shaheen, K. Hicke, K. Krebber","doi":"10.1117/12.2678295","DOIUrl":null,"url":null,"abstract":"Geometric phase measured per beat period in a Φ-OTDR based on coherent heterodyne detection is used to measure strain. Proposed method is robust to polarisation mismatch fading as a polarisation mismatch between interfering beams is not a hindrance to the measurement of the geometric phase. The Geometric phase is a function of the intensities of the interfering beams as well as the envelope of the beat signal. Its calculation does not require phase unwrapping and accordingly does not suffer the phase unwrapping errors. It is required to be equated with the traditionally measured phase by applying a scaling factor. The spatial resolution of the measured strain is reduced as it is calculated per beat period. Results are verified using a piezo-electric transducer inline a fiber-under-test.","PeriodicalId":424244,"journal":{"name":"European Workshop on Optical Fibre Sensors","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ΦgOTDR utilizing geometric phase\",\"authors\":\"Sabahat Shaheen, K. Hicke, K. Krebber\",\"doi\":\"10.1117/12.2678295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geometric phase measured per beat period in a Φ-OTDR based on coherent heterodyne detection is used to measure strain. Proposed method is robust to polarisation mismatch fading as a polarisation mismatch between interfering beams is not a hindrance to the measurement of the geometric phase. The Geometric phase is a function of the intensities of the interfering beams as well as the envelope of the beat signal. Its calculation does not require phase unwrapping and accordingly does not suffer the phase unwrapping errors. It is required to be equated with the traditionally measured phase by applying a scaling factor. The spatial resolution of the measured strain is reduced as it is calculated per beat period. Results are verified using a piezo-electric transducer inline a fiber-under-test.\",\"PeriodicalId\":424244,\"journal\":{\"name\":\"European Workshop on Optical Fibre Sensors\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Workshop on Optical Fibre Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2678295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Optical Fibre Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2678295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric phase measured per beat period in a Φ-OTDR based on coherent heterodyne detection is used to measure strain. Proposed method is robust to polarisation mismatch fading as a polarisation mismatch between interfering beams is not a hindrance to the measurement of the geometric phase. The Geometric phase is a function of the intensities of the interfering beams as well as the envelope of the beat signal. Its calculation does not require phase unwrapping and accordingly does not suffer the phase unwrapping errors. It is required to be equated with the traditionally measured phase by applying a scaling factor. The spatial resolution of the measured strain is reduced as it is calculated per beat period. Results are verified using a piezo-electric transducer inline a fiber-under-test.