{"title":"结合技术交易系统信号的替代方法的盈利能力","authors":"Jasdeep S. Banga, B. Wade Brorsen","doi":"10.1002/isaf.1442","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Past efforts determining the profitability of technical analysis reached varied conclusions. We test the profitability of a composite prediction that uses buy and sell signals from technical indicators as inputs. Both machine learning methods, like neural networks, and statistical methods, like logistic regression, are used to get predictions. Inputs are signals from trend-following and mean-reversal technical indicators in addition to the variance of prices. Four representative commodities from agricultural, livestock, financial, and foreign exchange futures markets are selected to determine profitability. Special care is taken to avoid data snooping error. Both neural networks and statistical methods did not show consistent profitability.</p>\n </div>","PeriodicalId":53473,"journal":{"name":"Intelligent Systems in Accounting, Finance and Management","volume":"26 1","pages":"32-45"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/isaf.1442","citationCount":"9","resultStr":"{\"title\":\"Profitability of alternative methods of combining the signals from technical trading systems\",\"authors\":\"Jasdeep S. Banga, B. Wade Brorsen\",\"doi\":\"10.1002/isaf.1442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Past efforts determining the profitability of technical analysis reached varied conclusions. We test the profitability of a composite prediction that uses buy and sell signals from technical indicators as inputs. Both machine learning methods, like neural networks, and statistical methods, like logistic regression, are used to get predictions. Inputs are signals from trend-following and mean-reversal technical indicators in addition to the variance of prices. Four representative commodities from agricultural, livestock, financial, and foreign exchange futures markets are selected to determine profitability. Special care is taken to avoid data snooping error. Both neural networks and statistical methods did not show consistent profitability.</p>\\n </div>\",\"PeriodicalId\":53473,\"journal\":{\"name\":\"Intelligent Systems in Accounting, Finance and Management\",\"volume\":\"26 1\",\"pages\":\"32-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/isaf.1442\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems in Accounting, Finance and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems in Accounting, Finance and Management","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/isaf.1442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Profitability of alternative methods of combining the signals from technical trading systems
Past efforts determining the profitability of technical analysis reached varied conclusions. We test the profitability of a composite prediction that uses buy and sell signals from technical indicators as inputs. Both machine learning methods, like neural networks, and statistical methods, like logistic regression, are used to get predictions. Inputs are signals from trend-following and mean-reversal technical indicators in addition to the variance of prices. Four representative commodities from agricultural, livestock, financial, and foreign exchange futures markets are selected to determine profitability. Special care is taken to avoid data snooping error. Both neural networks and statistical methods did not show consistent profitability.
期刊介绍:
Intelligent Systems in Accounting, Finance and Management is a quarterly international journal which publishes original, high quality material dealing with all aspects of intelligent systems as they relate to the fields of accounting, economics, finance, marketing and management. In addition, the journal also is concerned with related emerging technologies, including big data, business intelligence, social media and other technologies. It encourages the development of novel technologies, and the embedding of new and existing technologies into applications of real, practical value. Therefore, implementation issues are of as much concern as development issues. The journal is designed to appeal to academics in the intelligent systems, emerging technologies and business fields, as well as to advanced practitioners who wish to improve the effectiveness, efficiency, or economy of their working practices. A special feature of the journal is the use of two groups of reviewers, those who specialize in intelligent systems work, and also those who specialize in applications areas. Reviewers are asked to address issues of originality and actual or potential impact on research, teaching, or practice in the accounting, finance, or management fields. Authors working on conceptual developments or on laboratory-based explorations of data sets therefore need to address the issue of potential impact at some level in submissions to the journal.