基于模糊补偿的下肢外骨骼自适应控制

Zhong Li, Xiaorong Guan, Cheng Xu, Huibin Li, K. Zou, Meng Zhu
{"title":"基于模糊补偿的下肢外骨骼自适应控制","authors":"Zhong Li, Xiaorong Guan, Cheng Xu, Huibin Li, K. Zou, Meng Zhu","doi":"10.1109/INDIN45582.2020.9442169","DOIUrl":null,"url":null,"abstract":"A novel adaptive fuzzy approach is proposed for the control system which is used for a lower limb exoskeleton developed by us. In this study, the fuzzy compensation is used to approximate the human-exoskeleton interaction, uncertainties and unmodeled items of the exoskeleton system. Above all, a detailed dynamic model of swing leg is constructed with a consideration of the actuators, and also the human-exoskeleton interaction and uncertainties are taken into account in the dynamic modeling. Then, an adaptive controller with fuzzy compensator which can adjust the control law through the output is designed for the lower limb exoskeleton with a stability analysis. The simulation results showed that the proposed method can effectively help the swing leg to track the desired trajectory with little error. With the presented control strategy, it is able to mitigate the effects of uncertainties, imprecise model and human-exoskeleton interaction to the control of lower limb exoskeleton.","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive Control of a Lower Limb Exoskeleton Based on Fuzzy Compensation\",\"authors\":\"Zhong Li, Xiaorong Guan, Cheng Xu, Huibin Li, K. Zou, Meng Zhu\",\"doi\":\"10.1109/INDIN45582.2020.9442169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel adaptive fuzzy approach is proposed for the control system which is used for a lower limb exoskeleton developed by us. In this study, the fuzzy compensation is used to approximate the human-exoskeleton interaction, uncertainties and unmodeled items of the exoskeleton system. Above all, a detailed dynamic model of swing leg is constructed with a consideration of the actuators, and also the human-exoskeleton interaction and uncertainties are taken into account in the dynamic modeling. Then, an adaptive controller with fuzzy compensator which can adjust the control law through the output is designed for the lower limb exoskeleton with a stability analysis. The simulation results showed that the proposed method can effectively help the swing leg to track the desired trajectory with little error. With the presented control strategy, it is able to mitigate the effects of uncertainties, imprecise model and human-exoskeleton interaction to the control of lower limb exoskeleton.\",\"PeriodicalId\":185948,\"journal\":{\"name\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45582.2020.9442169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对自行研制的下肢外骨骼控制系统,提出了一种新的自适应模糊控制方法。在这项研究中,模糊补偿被用于近似人与外骨骼的相互作用,不确定性和外骨骼系统的未建模项目。首先,建立了考虑作动器的摆动腿的详细动力学模型,并在动力学建模中考虑了人与外骨骼的相互作用和不确定性。在此基础上,设计了基于模糊补偿的下肢外骨骼自适应控制器,并对其稳定性进行了分析。仿真结果表明,该方法能有效地帮助摆腿跟踪目标轨迹,误差小。该控制策略能够减轻不确定性、模型不精确和人-外骨骼相互作用对下肢外骨骼控制的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive Control of a Lower Limb Exoskeleton Based on Fuzzy Compensation
A novel adaptive fuzzy approach is proposed for the control system which is used for a lower limb exoskeleton developed by us. In this study, the fuzzy compensation is used to approximate the human-exoskeleton interaction, uncertainties and unmodeled items of the exoskeleton system. Above all, a detailed dynamic model of swing leg is constructed with a consideration of the actuators, and also the human-exoskeleton interaction and uncertainties are taken into account in the dynamic modeling. Then, an adaptive controller with fuzzy compensator which can adjust the control law through the output is designed for the lower limb exoskeleton with a stability analysis. The simulation results showed that the proposed method can effectively help the swing leg to track the desired trajectory with little error. With the presented control strategy, it is able to mitigate the effects of uncertainties, imprecise model and human-exoskeleton interaction to the control of lower limb exoskeleton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A GWO-AFSA-SVM Model-Based Fault Pattern Recognition for the Power Equipment of Autonomous vessels System and Software Engineering, Runtime Intelligence Sentiment Analysis of Chinese E-commerce Reviews Based on BERT IoT - and blockchain-enabled credible scheduling in cloud manufacturing: a systemic framework Industry Digitalisation, Digital Twins in Industrial Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1