使用一阶和二阶导数技术的噪声和偏置体积数据的可视化

M. Persoon, I. Serlie, F. Post, R. Truyen, F. Vos
{"title":"使用一阶和二阶导数技术的噪声和偏置体积数据的可视化","authors":"M. Persoon, I. Serlie, F. Post, R. Truyen, F. Vos","doi":"10.1109/VISUAL.2003.1250397","DOIUrl":null,"url":null,"abstract":"The quality of volume visualization depends strongly on the quality of the underlying data. In virtual colonoscopy, CT data should be acquired at a low radiation dose that results in a low signal-to-noise ratio. Alternatively, MRI data is acquired without ionizing radiation, but suffers from noise and bias (global signal fluctuations). Current volume visualization techniques often do not produce good results with noisy or biased data. This paper describes methods for volume visualization that deal with these imperfections. The techniques are based on specially adapted edge detectors using first and second order derivative filters. The filtering is integrated into the visualization process. The first order derivative method results in good quality images but suffers from localization bias. The second order method has better surface localization, especially in highly curved areas. It guarantees minimal detail smoothing resulting in a better visualization of polyps.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Visualization of noisy and biased volume data using first and second order derivative techniques\",\"authors\":\"M. Persoon, I. Serlie, F. Post, R. Truyen, F. Vos\",\"doi\":\"10.1109/VISUAL.2003.1250397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of volume visualization depends strongly on the quality of the underlying data. In virtual colonoscopy, CT data should be acquired at a low radiation dose that results in a low signal-to-noise ratio. Alternatively, MRI data is acquired without ionizing radiation, but suffers from noise and bias (global signal fluctuations). Current volume visualization techniques often do not produce good results with noisy or biased data. This paper describes methods for volume visualization that deal with these imperfections. The techniques are based on specially adapted edge detectors using first and second order derivative filters. The filtering is integrated into the visualization process. The first order derivative method results in good quality images but suffers from localization bias. The second order method has better surface localization, especially in highly curved areas. It guarantees minimal detail smoothing resulting in a better visualization of polyps.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

体可视化的质量很大程度上取决于底层数据的质量。在虚拟结肠镜检查中,CT数据应该在低辐射剂量下获得,从而导致低信噪比。另外,MRI数据是在没有电离辐射的情况下获得的,但会受到噪声和偏置(全局信号波动)的影响。当前的体可视化技术往往不能产生良好的结果与噪声或有偏差的数据。本文描述了处理这些缺陷的体可视化方法。该技术基于一阶和二阶导数滤波器的特殊边缘检测器。过滤被集成到可视化过程中。一阶导数方法得到的图像质量较好,但存在定位偏差。二阶方法具有较好的表面局部化效果,特别是在高弯曲区域。它保证最小的细节平滑,从而更好地可视化息肉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualization of noisy and biased volume data using first and second order derivative techniques
The quality of volume visualization depends strongly on the quality of the underlying data. In virtual colonoscopy, CT data should be acquired at a low radiation dose that results in a low signal-to-noise ratio. Alternatively, MRI data is acquired without ionizing radiation, but suffers from noise and bias (global signal fluctuations). Current volume visualization techniques often do not produce good results with noisy or biased data. This paper describes methods for volume visualization that deal with these imperfections. The techniques are based on specially adapted edge detectors using first and second order derivative filters. The filtering is integrated into the visualization process. The first order derivative method results in good quality images but suffers from localization bias. The second order method has better surface localization, especially in highly curved areas. It guarantees minimal detail smoothing resulting in a better visualization of polyps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voxels on fire [computer animation] Chameleon: an interactive texture-based rendering framework for visualizing three-dimensional vector fields Fast volume segmentation with simultaneous visualization using programmable graphics hardware Adaptive design of a global opacity transfer function for direct volume rendering of ultrasound data Visualization experiences and issues in deep space exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1