一种用于交互式跑步机的双线式体重支撑系统

Jongbum Kim, Seunghue Oh, Junyoung Kim, Jonghyun Kim
{"title":"一种用于交互式跑步机的双线式体重支撑系统","authors":"Jongbum Kim, Seunghue Oh, Junyoung Kim, Jonghyun Kim","doi":"10.1109/ICORR.2019.8779549","DOIUrl":null,"url":null,"abstract":"Body weight support (BWS) system is widely used for patients to help their gait training. However, that existing systems require large workspace and elastic component in actuation makes the systems inappropriate for wide clinical use. The interactive treadmill was reported to be cost/space effectively simulate overground walking, but there was no suitable BWS system for the treadmill. We proposed a new concept of body weight support system for interactive treadmill. For wide clinical use, we applied a two-wire driven mechanism with simple actuator and a custom pelvic-type harness. With three healthy subjects, the performance of the proposed BWS system on unloading force control was evaluated, and the result showed that the feasibility of the proposed BWS system.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-wire body weight support system for interactive treadmill\",\"authors\":\"Jongbum Kim, Seunghue Oh, Junyoung Kim, Jonghyun Kim\",\"doi\":\"10.1109/ICORR.2019.8779549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Body weight support (BWS) system is widely used for patients to help their gait training. However, that existing systems require large workspace and elastic component in actuation makes the systems inappropriate for wide clinical use. The interactive treadmill was reported to be cost/space effectively simulate overground walking, but there was no suitable BWS system for the treadmill. We proposed a new concept of body weight support system for interactive treadmill. For wide clinical use, we applied a two-wire driven mechanism with simple actuator and a custom pelvic-type harness. With three healthy subjects, the performance of the proposed BWS system on unloading force control was evaluated, and the result showed that the feasibility of the proposed BWS system.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

体重支撑系统(Body weight support, BWS)被广泛应用于患者的步态训练。然而,现有的系统需要大的工作空间和弹性元件在驱动使得系统不适合广泛的临床应用。据报道,交互式跑步机可以有效地模拟地面行走的成本/空间,但没有合适的BWS系统用于跑步机。提出了交互式跑步机体重支撑系统的新概念。为了广泛的临床应用,我们采用了一种带有简单驱动器和定制骨盆型线束的双线驱动机构。以3名健康受试者为对象,对所提出的BWS系统卸载力控制性能进行了评价,结果表明所提出的BWS系统是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A two-wire body weight support system for interactive treadmill
Body weight support (BWS) system is widely used for patients to help their gait training. However, that existing systems require large workspace and elastic component in actuation makes the systems inappropriate for wide clinical use. The interactive treadmill was reported to be cost/space effectively simulate overground walking, but there was no suitable BWS system for the treadmill. We proposed a new concept of body weight support system for interactive treadmill. For wide clinical use, we applied a two-wire driven mechanism with simple actuator and a custom pelvic-type harness. With three healthy subjects, the performance of the proposed BWS system on unloading force control was evaluated, and the result showed that the feasibility of the proposed BWS system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Simulation of Human Walking Augmented by a Powered Ankle Exoskeleton Pattern recognition and direct control home use of a multi-articulating hand prosthesis Feasibility study: Towards Estimation of Fatigue Level in Robot-Assisted Exercise for Cardiac Rehabilitation Performance Evaluation of EEG/EMG Fusion Methods for Motion Classification Texture Discrimination using a Soft Biomimetic Finger for Prosthetic Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1