基于深度学习算法的汽车行业焊缝分类

Charbel El Hachem, Gilles Perrot, Loïc Painvin, Jean-Baptiste Ernst-Desmulier, R. Couturier
{"title":"基于深度学习算法的汽车行业焊缝分类","authors":"Charbel El Hachem, Gilles Perrot, Loïc Painvin, Jean-Baptiste Ernst-Desmulier, R. Couturier","doi":"10.1109/IAICT52856.2021.9532569","DOIUrl":null,"url":null,"abstract":"Welding seam inspection is key process in the automotive industry and should guarantee the quality required by the client. Visual inspection is achieved by the operator who checks each part manually, making the reliability highly improvable. That's why automating the visual inspection is needed in today's production process. Collecting data from inside the plant may not provide a balanced number of images between good welding seams and bad welding seams. In this article, we will compare a standard deep learning algorithm applied on raw data with data augmentation approaches. Our target is to reach an accuracy of 97 % on the defected reference parts. This target is reached on some welds, while it remains a challenge on other welds.","PeriodicalId":416542,"journal":{"name":"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Welding Seam Classification in the Automotive Industry using Deep Learning Algorithms\",\"authors\":\"Charbel El Hachem, Gilles Perrot, Loïc Painvin, Jean-Baptiste Ernst-Desmulier, R. Couturier\",\"doi\":\"10.1109/IAICT52856.2021.9532569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Welding seam inspection is key process in the automotive industry and should guarantee the quality required by the client. Visual inspection is achieved by the operator who checks each part manually, making the reliability highly improvable. That's why automating the visual inspection is needed in today's production process. Collecting data from inside the plant may not provide a balanced number of images between good welding seams and bad welding seams. In this article, we will compare a standard deep learning algorithm applied on raw data with data augmentation approaches. Our target is to reach an accuracy of 97 % on the defected reference parts. This target is reached on some welds, while it remains a challenge on other welds.\",\"PeriodicalId\":416542,\"journal\":{\"name\":\"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT52856.2021.9532569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT52856.2021.9532569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

焊缝检测是汽车行业的关键工序,应保证客户要求的质量。目视检查由操作员手动检查每个部件,使可靠性大大提高。这就是为什么在今天的生产过程中需要自动化视觉检查的原因。从工厂内部收集数据可能无法在良好的焊缝和不良的焊缝之间提供平衡的图像数量。在本文中,我们将比较应用于原始数据的标准深度学习算法和数据增强方法。我们的目标是在有缺陷的参考零件上达到97%的精度。在一些焊缝上达到了这一目标,而在其他焊缝上仍然是一个挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Welding Seam Classification in the Automotive Industry using Deep Learning Algorithms
Welding seam inspection is key process in the automotive industry and should guarantee the quality required by the client. Visual inspection is achieved by the operator who checks each part manually, making the reliability highly improvable. That's why automating the visual inspection is needed in today's production process. Collecting data from inside the plant may not provide a balanced number of images between good welding seams and bad welding seams. In this article, we will compare a standard deep learning algorithm applied on raw data with data augmentation approaches. Our target is to reach an accuracy of 97 % on the defected reference parts. This target is reached on some welds, while it remains a challenge on other welds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wi-Fi CSI Based Human Sign Language Recognition using LSTM Network Effect of Antenna Power Roll-Off on Performance and Coverage of 4G Cellular Network from High Altitude Platforms Virtual Reality Experience in Tourism: A Factor Analysis Assessment Design of Integrated Control System Based On IoT With Context Aware Method In Hydroponic Plants Stability Control for Bipedal Robot in Standing and Walking using Fuzzy Logic Controller
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1