基于扩展有限状态机的混合测试生成方法

Ana Turlea, F. Ipate, R. Lefticaru
{"title":"基于扩展有限状态机的混合测试生成方法","authors":"Ana Turlea, F. Ipate, R. Lefticaru","doi":"10.1109/SYNASC.2016.037","DOIUrl":null,"url":null,"abstract":"This paper presents a hybrid test generation approach from extended finite state machines combining genetic algorithms with local search techniques. Many test generation methods (both functional and structural testing methods) use genetic algorithms. Genetic algorithms may take a long time to converge to a global optimum and for a huge neighborhood they can be inefficient or unsuccessful. In this paper we use hybrid genetic algorithms to generate test data for some chosen paths for extended finite state machines. Local search is applied to improve the best individual for each generation of the genetic algorithm.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Hybrid Test Generation Approach Based on Extended Finite State Machines\",\"authors\":\"Ana Turlea, F. Ipate, R. Lefticaru\",\"doi\":\"10.1109/SYNASC.2016.037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a hybrid test generation approach from extended finite state machines combining genetic algorithms with local search techniques. Many test generation methods (both functional and structural testing methods) use genetic algorithms. Genetic algorithms may take a long time to converge to a global optimum and for a huge neighborhood they can be inefficient or unsuccessful. In this paper we use hybrid genetic algorithms to generate test data for some chosen paths for extended finite state machines. Local search is applied to improve the best individual for each generation of the genetic algorithm.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种结合遗传算法和局部搜索技术的扩展有限状态机混合测试生成方法。许多测试生成方法(包括功能和结构测试方法)使用遗传算法。遗传算法可能需要很长时间才能收敛到全局最优,对于一个巨大的邻域,它们可能效率低下或不成功。本文采用混合遗传算法对扩展有限状态机的一些选定路径生成测试数据。采用局部搜索改进每一代遗传算法的最优个体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Test Generation Approach Based on Extended Finite State Machines
This paper presents a hybrid test generation approach from extended finite state machines combining genetic algorithms with local search techniques. Many test generation methods (both functional and structural testing methods) use genetic algorithms. Genetic algorithms may take a long time to converge to a global optimum and for a huge neighborhood they can be inefficient or unsuccessful. In this paper we use hybrid genetic algorithms to generate test data for some chosen paths for extended finite state machines. Local search is applied to improve the best individual for each generation of the genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1