基于一维卷积神经网络的代谢综合征心电信号分析

Chhayly Lim, Jung-Yeon Kim, Yunyoung Nam
{"title":"基于一维卷积神经网络的代谢综合征心电信号分析","authors":"Chhayly Lim, Jung-Yeon Kim, Yunyoung Nam","doi":"10.1109/CSCI51800.2020.00134","DOIUrl":null,"url":null,"abstract":"Metabolic syndrome (MetS) is a cluster of metabolic disorders associated with medical conditions: abdominal obesity, high blood pressure, insulin resistance, etc. People with MetS have a higher risk of cardiovascular diseases and type 2 diabetes mellitus. Hence, early detection of MetS can be useful in the field of healthcare. In this paper, we propose a 1D-Convolution Neural Network (1D-CNN) model for classifying the electrocardiogram (ECG) signals of the GBBANet online database into two classes: a group of people with the medical condition (MetS [n=15]) and a control group (CG [n=10]). The dataset consists of 5 ECG recordings per person. The proposed 1D-CNN model has achieved an overall accuracy of 88.32%.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ECG Signal Analysis for Patient with Metabolic Syndrome based on 1D-Convolution Neural Network\",\"authors\":\"Chhayly Lim, Jung-Yeon Kim, Yunyoung Nam\",\"doi\":\"10.1109/CSCI51800.2020.00134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metabolic syndrome (MetS) is a cluster of metabolic disorders associated with medical conditions: abdominal obesity, high blood pressure, insulin resistance, etc. People with MetS have a higher risk of cardiovascular diseases and type 2 diabetes mellitus. Hence, early detection of MetS can be useful in the field of healthcare. In this paper, we propose a 1D-Convolution Neural Network (1D-CNN) model for classifying the electrocardiogram (ECG) signals of the GBBANet online database into two classes: a group of people with the medical condition (MetS [n=15]) and a control group (CG [n=10]). The dataset consists of 5 ECG recordings per person. The proposed 1D-CNN model has achieved an overall accuracy of 88.32%.\",\"PeriodicalId\":336929,\"journal\":{\"name\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Science and Computational Intelligence (CSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSCI51800.2020.00134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

代谢综合征(MetS)是一组与腹部肥胖、高血压、胰岛素抵抗等疾病相关的代谢紊乱。患有MetS的人患心血管疾病和2型糖尿病的风险更高。因此,MetS的早期检测在医疗保健领域是有用的。在本文中,我们提出了一种1d -卷积神经网络(1D-CNN)模型,用于将GBBANet在线数据库的心电图(ECG)信号分为两类:一类是有医疗状况的人群(MetS [n=15]),另一类是对照组(CG [n=10])。该数据集由每人5次心电图记录组成。本文提出的1D-CNN模型总体准确率达到了88.32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ECG Signal Analysis for Patient with Metabolic Syndrome based on 1D-Convolution Neural Network
Metabolic syndrome (MetS) is a cluster of metabolic disorders associated with medical conditions: abdominal obesity, high blood pressure, insulin resistance, etc. People with MetS have a higher risk of cardiovascular diseases and type 2 diabetes mellitus. Hence, early detection of MetS can be useful in the field of healthcare. In this paper, we propose a 1D-Convolution Neural Network (1D-CNN) model for classifying the electrocardiogram (ECG) signals of the GBBANet online database into two classes: a group of people with the medical condition (MetS [n=15]) and a control group (CG [n=10]). The dataset consists of 5 ECG recordings per person. The proposed 1D-CNN model has achieved an overall accuracy of 88.32%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First Success of Cancer Gene Data Analysis of 169 Microarrays for Medical Diagnosis Artificial Intelligence in Computerized Adaptive Testing Evidence for Monitoring the User and Computing the User’s trust Transfer of Hierarchical Reinforcement Learning Structures for Robotic Manipulation Tasks An open-source application built with R programming language for clinical laboratories to innovate process of excellence and overcome the uncertain outlook during the global healthcare crisis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1